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Abstract Islands offer unique ecological and evolu-
tionary insights, yet they are fragile ecosystems, par-
ticularly vulnerable to invasive species. The present
study focused on the origin of an invasive species in
Macaronesia and other Atlantic islands, specifically
the black rat, Rattus rattus. The ability of this species
to thrive is attributable to its ability to coexist with
humans in a commensal relationship. The objective of
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this study was to ascertain the origins of these insular
rat populations through the analysis of a molecular
marker, examining their genetic diversity within the
islands and providing information for their manage-
ment aiming for the conservation of native species.
The mitochondrial DNA D-loop region of 41 individ-
uals was sequenced to compare with sequences from
public databases in order to infer their most likely ori-
gin, using phylogenetic and network analyses. A total
of 106 different haplotypes were obtained from com-
bining sequences from GenBank and new sequences,
distributed into two distinct haplogroups. The Indian
Ocean group included samples from India and a num-
ber of other countries and islands in the Indian Ocean
region, as well as Italy and Cabo Verde. Meanwhile,
the Atlantic Ocean group included samples from
Europe, Oceania, Central and South America, and
Africa. For the first time, an Indian lineage was found
in Cabo Verde. These introductions are strongly
linked to European trade routes and human colonisa-
tions, Understanding the routes by which these popu-
lations arrived on the islands, as well as their origins,
is therefore crucial to understanding the patterns of
biological invasions.

Keywords Historical trade routes - Invasive

black rat - Island Biogeography - Macaronesia -
Mitochondrial D-loop region
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Introduction

Islands, which are often considered to be isolated
havens of biodiversity, are not only hotspots of end-
emism but are also highly vulnerable to the intro-
duction of invasive species (Whittaker and Fernan-
dez-Palacios 2007). Introduced species are those
that were intentionally or unintentionally introduced
into new territories and established populations
within the new environment (Feldhaar and Lach
2020), while invasive species are introduced species
that, once established, impact the community struc-
ture of ecosystems by competing for resources, act-
ing as vectors of diseases, and engaging in predation
(Lockwood et al. 2013). Once non-native verte-
brates become established, they tend to compete
for resources, act as vectors for the transmission of
diseases, and engage in predation (Lockwood et al.
2013; Gaiotto et al. 2020). While most native and
endemic species often encounter challenges due to
their inability to adapt to competitive environments
(Alpert 2006), the consequences of invasive spe-
cies can be particularly severe on islands. This is
due to the existence of empty niches as a result of
the absence of entire groups of species, high num-
ber of endemic species, their relative inexperience
with competitors and predators, and their more lim-
ited distribution range compared to mainland spe-
cies (Gaiotto et al. 2020). This renders native island
species more vulnerable and at a disadvantage when
confronted with invaders (Gaiotto et al. 2020). The
isolation of island native populations, both geo-
graphically and genetically, serves to amplify the
impacts of alien species (Whittaker and Fernandez-
Palacios 2007). Hence, islands are considered good
natural laboratories to study introduced species,
especially oceanic ones (Whittaker et al. 2017).
This isolation intensifies the vulnerability of spe-
cies on islands due to low levels of gene flow, low
genetic variation, as well as their unique speciation
traits. This increases their susceptibility to extinc-
tion caused by environmental changes, such as the
introduction of invasive species. (Frankham 1997).
Oceanic islands, particularly those with a docu-
mented human colonisation history and that were
recently colonised provide a conducive environment
for tracking the origins of introduced biodiversity
(Whittaker and Fernandez-Palacios 2007).
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The Macaronesia region, situated in the northeast-
ern Atlantic Ocean, comprises five oceanic archi-
pelagos: the Azores, Madeira (including Selvagens
Archipelago), the Canary Islands and Cabo Verde.
The climate and biodiversity in this region are quite
distinct (Fernidndez-Palacios 2011). These systems
are all extremely vulnerable to invasive species due
to low levels of gene flow within populations of dif-
ferent islands, low genetic variation of island species
(Vasconcelos et al. 2010a), and an increased tendency
of extinctions caused by changes in the environment,
diseases, predators, competitors and climate (Crop-
per and Hanna 2014; Patifio et al. 2016; Wood et al.
2017). An example of a native species threatened by
invasive vertebrates in Macaronesia is Pipistrellus
maderensis in Madeira Archipelago, frequently pre-
dated by introduced domestic cats (Russo and Cis-
trone 2023). In addition to those interesting factors,
the history of human colonisation of these archipela-
gos is considered very recent and relatively well-stud-
ied (Barcellos, 1899, 1904; Dall’Angola 1990; Rod-
rigues et al. 2015). All Macaronesian islands were
found uninhabited in the fifteenth century, except
the Canary Islands (Fernandez-Palacios et al. 2011),
making it easier to track human history in the region
and also the origin of the study species.

During the fifteenth century, navigation through
the oceans became more common in Europe, espe-
cially by Spanish and Portuguese navigators. The
purpose was to establish new trade routes, exploit
resources and build new colonies. Historically, the
first Macaronesian archipelago these navigators
reached was the Canary Archipelago in the begin-
ning of the fourteenth century. However, the islands
had already been settled by the indigenous Guanche
population. Consequently, under orders from the
Castilian king Henry III, Jean de Béthencourt and
Gadifer de La Salle initiated hostilities over the ter-
ritory, which continued until the end of the fifteenth
century (Rodrigues 2016; Bithner 2024). The second
was Madeira, discovered by Jodo Gongalves Zarco
and Tristdo Vaz Teixeira in 1418 (Verissimo 2016).
Later, Azores was first visited by Gongalo Velho in
1431 (Rodrigues et al. 2015). The final archipelago to
be discovered was Cabo Verde, which was found by
Anténio da Noli and Diogo Gomes in 1460 (Barcel-
los, 1899; Dall’Angola 1990).

Throughout these travels, there is evidence to sug-
gest that not only were humans the occupants of the
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ships, but there is also documentation of the pres-
ence of introduced small terrestrial mammals. In
the Canary Islands, that lead to the introduction, for
example, of the greater white-toothed shrew Croci-
dura russula, the pygmy white-toothed shrew Suncus
etruscus, the Barbary ground squirrel Atlantoxerus
getulus, the North African hedgehog Afelerix algirus,
the black rat Rattus rattus, the brown rat Rattus nor-
vegicus, and the house mouse Mus musculus, some
of them invasive (Nogales et al. 2006; Whittaker and
Fernandez-Palacios 2007). The last three rodents
are also present in the Azores Archipelago (Borges,
2010), in the Madeira Archipelago (Borges et al.
2008) and in Cabo Verde (Martinez et al. 2021). The
European hedgehog Erinaceus europaeus is the only
species that has not been identified as a threat to local
biodiversity (Borges, 2010). Besides the species men-
tioned above, in Cabo Verde, the bats identified in the
archipelago include Hypsugo savii, Pipistrellus kuh-
lii, Miniopterus schreibersii, Plecotus austriacus, and
Taphozous nudiventris. The question of whether these
species are indigenous or non-indigenous remains
uncertain (Borloti et al. 2020).

The present study aimed to understand the patterns
of colonisation of three Macaronesian archipelagos
by the black rat, R. rattus, which was hypothesised
to have arrived at a similar time as the human popu-
lation, around 550 years ago (Borges, 2010; Mas-
seti 2010). The black rat is one of the mammals that
was unintentionally transported to the Macaronesian
Islands (Borges, 2010). In the Azores, it is indicated
that it arrived with the first settlers, and is present on
all the islands (Borges, 2010; Masseti 2010; Mathias
et al. 1998). In the Madeira Archipelago, the species
began to colonise immediately after human arrival
and is present on the island of Madeira and Porto
Santo (Borges, 2010; Zino et al. 2001), and absent
in Selvagens (Sequeira et al. 2023). In Cabo Verde,
the presence of the species on the islands of Santiago,
Brava, Santo Antdo, Sdo Nicolau, Boavista, Maio
and Fogo probably coincides with the first human
colonisations (Hazevoet and Masseti 2011). The spe-
cies arrived in the other Atlantic Islands, such as Sdo
Tomé and Principe, during the fifteenth century, with
the Portuguese ships according with Dutton (1994).
There is no information about the arrival of R. rattus
in Guinea-Bissau.

This species is native to Asia, but is distributed
across most of the world (Baig et al. 2019). It exhibits

a remarkable degree of phenotypic plasticity in its
adaptations that explains its fast dispersal, with the
ability to inhabit a diverse range of environments,
adapting to a broad omnivorous diet, and to urban
ecosystems (Borroto-Pdez and Woods 2012). The
species also has high reproductive levels and short
generation time, which can vary with temperature and
food availability on the islands (Harper and Bunbury
2015). As an invasive species, its aggressive and ter-
ritorial behaviour is one of the causes of decline of
native fauna and flora richness, especially on island
biotas (Borroto-Paez and Woods 2012). As an exam-
ple, Gaiotto et al. (2020) indicated that the black rat
has negatively affected the populations of Noronha
skinks in the Fernando de Noronha Archipelago. The
species also negatively impact humans in urban areas,
once it is a vector of some diseases like leptospiro-
sis, infection by hepatic capillariasis, bubonic plague,
leprosy, among others (Babolin et al. 2016; Enscore
et al. 2020; Lima et al. 2022).

The specific objectives of this study were to deter-
mine the provenance of R. rattus in Macaronesia and
its potential introduction events, i.e. whether islands
within archipelagos have divergent origins and their
relationships with mainland populations. It was
hypothesised that there is a strong identity of these
populations with mainland Portugal and coastal
Africa and other African Atlantic Islands, such as
Guinea-Bissau and Sdo Tomé and Principe, like what
was observed in other invasive species in the region
(Forster et al. 2009; Gabriel et al. 2013, 2015, 2024).
In the case of Cabo Verde, no previous studies were
performed with invasive vertebrates, so it was hypoth-
esised that a similar pattern will be observed as in the
other regions of Macaronesia, based on the available
historical indications. This correlation is attributed to
the trends and colonisation from the mainland to the
islands. Also, it was aimed to characterise the genetic
structure of this invasive species. It is anticipated that
the degree of genetic diversity shared among the rats
from the archipelagos and those from the mainland
will be low. This information will provide fundamen-
tal insights into the mechanisms underlying its inva-
sion success and is essential for designing evidence-
based management interventions (Du et al. 2021).

For achieving these objectives, molecular meth-
ods were used as they are proven to be important for
understanding the colonisation pathways of intro-
duced species in this region (Cristescu 2015). A
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molecular marker that has been used in studies of
this nature is the D-loop mitochondrial region, which
possesses both conserved regions and hypervariable
regions (Larizza et al. 2002; Nyunja et al. 2017).

Methodology
Study area

The Macaronesian region, located in the northeastern
Atlantic Ocean, comprises five volcanic archipelagos
(Fig. 1): the Azores, the Madeira Islands, the Selva-
gens (belonging to Madeira), the Canary Islands and
the Cabo Verde Islands. The oldest subaerial lavas are
on the Selvagem Grande, estimated to be 26 million
years old (my), in the Selvagens Archipelago (with

no rats), while the youngest are on Pico Island in the
Azores, with 0.19 my (Florencio et al. 2021). Despite
their volcanic origin, only the Azores, the Canary
Islands and Cabo Verde maintain active volcanism
(Fernandez-Palacios 2011). Of this region, Azores,
Madeira and Cabo Verde were sampled, and these are
described in more detail below. The Azores Archipel-
ago, located approximately 1,370 km from Lisbon in
between the North American and the Eurasian plate,
is a Portuguese territory and consists of nine islands:
Santa Maria, Sdo Miguel, Terceira, Graciosa, Sao
Jorge, Pico, Faial, Flores and Corvo. The region expe-
riences a temperate climate, characterised by cool and
humid conditions throughout the year (Fernandez-
Palacios 2011; Florencio et al. 2021). The Madeira
Archipelago, made up of Madeira Island, Porto Santo
and Ilhéu da Cal (the oldest with around 19 my) and
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Fig.1 Maps representing the geographical location of the
samples of R. rattus used in this study for D-loop mitochon-
drial DNA region. The upper image represents the worldwide
samples. The grey area delineates the Macaronesia region. The
bottom images represent samples from Azores, Madeira, Cabo
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Desertas, with three other uninhabited islands and
islets: Ilhéu Chao, Deserta Grande and Bugio (Flor-
encio et al. 2021). The climate present in the Archi-
pelago is classified as Mediterranean, bearing a
resemblance to that of the Canary Islands. During the
winter months, the archipelago experiences mild and
humid weather, while in summer, the weather is dry
and warm (Fernandez-Palacios 2011). Cabo Verde,
on the other hand, has a warm and dry climate, due
to its location closer to the Sahel, about 570 kms from
the coast of Senegal (Duarte and Romeiras 2009).
The archipelago is made up of ten main islands:
Santo Antdo, Sdo Vicente, Santa Luzia, Sdo Nicolau,
Sal, Boavista, Maio, Santiago, Fogo and Brava, and
several islets of which Boavista is the oldest consider-
ing its subaerial lavas, with around 18 my (Florencio
et al. 2021).

Sao Tomé and Principe comprise two oceanic
islands, Sao Tomé Island and Principe Island, and
several islets, situated in the Gulf of Guinea, in west-
ern equatorial Africa. The local climate is oceanic
equatorial and is divided into rainy and dry seasons
(Cerfaco et al. 2022). The first continental nation
included in this study was Guinea-Bissau, located
in West Africa. The climate in the region is classi-
fied as tropical, also exhibiting a distinct dry season
during the winter months, and a rainy season during
the summer months (Myers et al. 2000; Mendes and
Fragoso 2023). The Iberian Peninsula is constituted
by two countries, Portugal and Spain, which share
borders with the Atlantic Ocean and the Mediterra-
nean Sea. The majority of the territory is influenced
by the Mediterranean climate, which is wet during
the winter months and dry during the summer months
(Vide and Cantos 2001; Mora and Vieira 2020). The
samples from Sdo Tomé and Principe, Guinea-Bis-
sau, Portugal and Spain were used for comparison
purposes, as they are a potential source for the intro-
duction of the species in the Macaronesian region.

Study species

Rattus rattus has variable dorsal and ventral fur col-
ouration, ranging from greyish black to brown, and
typically displaying shades of grey, yellow or white,
respectively. The presence of prominent ears, which
can reach and cover the eyes, is notable. The tail is
significantly longer than the body and head and is

usually slender and lighter in colouration (Yigit et al.
1998; Islam et al. 2021). The species exhibits noctur-
nal activity patterns and possesses advanced climb-
ing abilities, both of which are key characteristics
that facilitate its invasive behaviour (§tolh0ferové
et al. 2024). It is a prominent example of a terrestrial
species that has become invasive on islands, rank-
ing among the top 10 most invasive species on these
islands (Spatz et al. 2017).

Data collection

The tissue samples were collected in the Macarone-
sian region, Sdo Tomé and Principe and on mainland
Europe and Africa (Fig. 1). All samples were col-
lected far from airport and port areas, in humid habi-
tats, to avoid recently introduced individuals. In the
Azores Archipelago, six samples were obtained from
the island of Sdo Miguel. In the Madeiran Archi-
pelago, five samples were collected from Madeira
Island and four from Porto Santo Island. Sample
from Azores and Madeira Archipelagos were oppor-
tunistically collected from roadkills. Samples from
Cabo Verde were collected opportunistically as
bycatches of mouse sampling with Sherman traps
(23x9x%8 cm, H. B. Sherman traps Inc., Tallahassee,
Florida), namely on the islands of Sdo Vicente (one
sample), Fogo (five samples), Santiago (three sam-
ples) and Brava (four samples). The Cabo Verdean
samples were deposited in the Biocatalog collection
at the Technical University of the Atlantic, Mindelo,
Sao Vicente, using the same codes as for genetics. In
mainland Portugal (six samples) and in Spain (one
sample), roadkills were also used. From Sao Tomé
Island and Guinea Bissau three samples were col-
lected from each country using Sherman traps. All
the information about the samples can be found in
Supplementary Table S1. Some of these animals were
photographed for morphological identification and
those photographs were deposited in the Morphobank
project 5896 (codes M957008-M957063).

DNA extraction, amplification and sequencing

The DNA was extracted with the saline technique
outlined in Borloti et al. (2020). The mitochon-
drial D-loop region was amplified using the prim-
ers EGL4L (5° CCACCATCAACACCCAAAG 3)
and RJ3R (5 CATGCCTTGACGGCTATGTTG 3’)

@ Springer
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(Robins et al. 2007). The PCR was configured with
the initial activation temperature of 95 °C for 15 min,
followed by 35 cycles of denaturation at 95 °C for
60 s, annealing at 64 °C for 60 s and extension at
72 °C for 90 s with a touchdown of -0.5 °C in the
annealing temperature in each cycle until the tem-
perature reached 58 °C, followed by a 10-min exten-
sion at 72 °C. The products of the PCR process were
then subjected to Sanger sequencing at the CIBIO
facilities, and the chromatograms of forward and
reverse sequences were subsequently reviewed using
Geneious Prime 2024.0.7 (Kearse et al. 2012).

Data analysis

Phylogenetic and network analyses can yield insights
into the origin of populations, the number of introduc-
tions, the dispersal mechanisms, the genetic diversity,
and the establishment of species in novel ecosystems
(Cristescu 2015). The consensus of the sequences
was used to perform a Basic Local Alignment Search
Tool (BLAST) to identify similar sequences avail-
able on GenBank. The selection criteria included
sequences with 96% similarity, and the geographic
origin of these sequences and their GenBank acces-
sion codes were also documented in the Supplemen-
tary Table S1.

A total of 532 sequences from 23 countries were
downloaded from GenBank and included in the study
(Fig. 1) together with 41 new samples from 5 coun-
tries, in a total of 573 samples from 28 countries. The
new sequences were deposited on GenBank with the
codes PX508128-PX508168 (check Supplementary
Table S1 for details). A Clustal alignment was assem-
bled using the sequences from GenBank reference
and the new samples dataset, employing the software
Geneious Prime (Kearse et al. 2012). An alignment
with 273 base pairs was recovered.to maximise the
number of sequences of different lengths available in
GenBank.

A phylogenetic tree was constructed using unique
haplotypes created on TCS. All the 106 sequences
had the same length and a sample of R. norvegicus
was added as outgroup, in a total of 107 sequences
with 273 base pairs (indels included). The method
of phylogenetic analysis employed was the Bayesian
analysis. In order to ascertain the most appropriate
model for the Bayesian tree, the software MEGA
v11.0.13 (Tamura et al. 2021) was used to provide

@ Springer

the maximum likelihood (ML) tree with 1,000 boot-
strap replicates. The optimal model sequence evolu-
tion was determined to be HKY + G +1. The recon-
struction of the tree was facilitated by MrBayes
3.2.7. (Ronquist et al. 2012), which executed sim-
ulations of Markov Chain Monte Carlo (MCMC)
with 10° generations, producing 20,000 trees sav-
ing a tree every 100 generations. The bootstrap
value >95% was considered as evidence for highly
supported branches. The software Fig Tree v.1.4.3
(https://github.com/rambaut/figtree/releases/tag/
v1.4.5pre) was employed to visualise the tree.

The 573 sequences were then used to recon-
struct a haplotype network using TCS (Clement
et al. 2000), treating indels as a fifth state, with a
95% connection limit, to comprehend and visual-
ise the relationships among all the populations. To
visualise the results, tcsBU (Santos et al. 2016) was
employed.

Finally, indices of genetic diversity were calcu-
lated, i.e. haplotype diversity (Hd) and nucleotide
diversity (w), for all the samples, for the two main
detected haplogroups (the Indian Ocean group and
the Atlantic Ocean group) and for the Macaronesian
samples. Those calculations were performed using
the DnaSP 6.12.03 software. (Rozas et al. 2017).

Results
Phylogenetic tree

The phylogenetic tree was divided into two clusters
(Fig. 2). The larger cluster, named Indian Ocean,
comprised samples from India, Madagascar, Oman,
Yemen, Ethiopia, Tanzania, Mozambique, Grande
Comoro and Mayotte, Italy, and Cabo Verde. The
second cluster was divided in two clades, a small
clade called Madagascar, which consisted of sam-
ples from New Zealand and Madagascar, and the
Atlantic Ocean clade, which consisted of samples
from Denmark, France, Guadeloupe, French Poly-
nesia, Italy, Portugal (mainland, Madeira and the
Azores), Spain, New Zealand, Papua New Guinea,
Brazil, US Virgin Islands, Réunion, Madagascar,
Cabo Verde, Algeria, Tunisia, Sdo Tomé and Princ-
ipe, and Guinea-Bissau.
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Fig. 2 A Bayesian phylogenetic tree of D-loop region (273
base pairs) of R. rattus rooted with R. norvegicus (outgroup).
The white dots on the nodes indicate the bootstraps value
between 75 and 95% and the black dots indicate bootstraps

Haplotype network

The samples from Macaronesia and the mainland
were represented in seven haplotypes of the 106
obtained on the haplotype network (Fig. 3). Two
haplotypes were recovered in the Madeira Archi-
pelago, one haplotype in Azores, and four in Cabo
Verde. Two well defined haplogroups were evident.
The Indian Ocean haplogroup, included samples
from India and several countries and islands in the
Indian Ocean region (Madagascar, Oman, Yemen,
Ethiopia, Tanzania, Mozambique, Comoros and May-
otte), as well as Italy and Cabo Verde. The Atlantic
Ocean haplogroup, meanwhile, included samples
from Europe (Denmark, France, including Réunion,
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value >95%. The codes of the new samples of this study are
marked with asterisks (*). Colours in the inner circle repre-
sent the haplogroups and in the outer circle the locations of the
selected individual of each clade

Guadeloupe and French Polynesia, Italy, Portugal,
including Madeira and Azores, and Spain), Oceania
(New Zealand and Papua New Guinea), America
(Brazil and the US Virgin Islands), and Africa (Mad-
agascar, Cabo Verde, Algeria, Tunisia, Sdo Tomé and
Principe, and Guinea-Bissau). Finally, the Madagas-
car subgroup, included samples from Madagascar
and New Zealand. For further details regarding the
locations and references, please refer to Table S1 in
the Supplementary Material. This finding was further
corroborated by the phylogenetic tree (Fig. 2).

The Indian Ocean haplogroup exhibited a higher
degree of genetic diversification, characterised by
a greater degree of intrapopulation and interpopula-
tion genetic diversity, with a much higher number

@ Springer



46 Page 8 of 15

M. Wielewski et al.

i GQBY1586 \\
: GQ891594-96 \ \
KF282337-39

GQ891592 \
, /GQ891593

Q891590 GQ8I1591 \

GQB91587

JF718277
GQ891601
GQ891606

GQ891604

o Q891589 o
891584 'GQ891600-GQ891588

GQ891597
GQ891603 60891602

JF718276 Q891598

Fig. 3 Haplotype network for D-loop mitochondrial region
(273 base pairs) of R. rattus. The lines represent mutational
steps, the coloured circles represent haplotypes, and the open
dots represent missing or unsampled haplotypes. The size of
the circle is proportional to the number of individuals within

of different haplotypes than the Atlantic Ocean hap-
logroup per country population and in total. In the
Indian Ocean haplogroup, it was observed that a sam-
ple from Sdo Vicente (Cabo Verde), shared the same
haplotype with a sample from India. Madagascar hap-
lotype connected the two haplogroups, as it was con-
nected to an Indian haplotype by one mutation and to
a frequent haplotype comprising 27 sequences from
Papua New Guinea, French Polynesia, New Zealand,
Algeria, Tunisia, Denmark, France, Greece, Italy,
Guadeloupe, Brazil, Madeira, Porto Santo Island,
Azores, Sdo Tomé and Principe, mainland Portugal,
and Guinea-Bissau from the Atlantic Ocean haplo-
group. Evidence of genetic variation is indicated by
the presence of a distinct haplotype shared by Por-
tuguese and Spanish individuals, and another of
Madeira Island shared with Italy. The Fogo Island in
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Cabo Verde exhibits a unique haplotype, and there is
evidence of genetic similarity between New Zealand,
Sdo Tomé and Principe, and Santiago Island in Cabo
Verde. A Portuguese unique haplotype is also present,
suggesting further genetic variation after the intro-
duction to Europe.

Diversity analysis

The genetic diversity (haplotypic diversity and nucle-
otide diversity) of all sequences was high (Hd=0.875,
1=0.011). The Indian Ocean haplogroup presented
the highest values (Hd=0.975, 1=0.014), indicat-
ing an elevated proportion of unique haplotypes and a
considerable number of nucleotide differences within
the group. In contrast, the Atlantic Ocean group
exhibited lower values than the latter (Hd=0.761,
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1=0.005). The levels of diversity of the samples of
Macaronesia were the lowest (Hd=0.405, == 0.002).

Discussion

In this study, the colonisation history of R. rattus in
Macaronesia provided a historical perspective on
European navigations. It was hypothesised that over
500 years ago, the presence of boats along the coast
of the Atlantic and Indian oceans for the purpose of
replenishing supplies and human colonisation may
have facilitated the dispersal of the study species.
This is based on the premise that the Atlantic Islands
in question, excluding the Canary Islands, were unin-
habited by humans and other rodents at the time
(Whittaker and Fernandez-Palacios 2007; Borges
et al. 2008; Borges 2010; Masseti 2010). The archi-
pelago of the Canary Islands is distinguished from
other Macaronesia islands in that it was first colonised
by humans and rats before Renaissance. This process
was particularly evident on the islands of Lanzarote
and Fuerteventura, which are geographically closest
to the African continent (Gaspar and Vallejo 1992).
As demonstrated in the study by Rando et al. (2012),
the presence of fossils of R. rattus on the islands has
been dated between 580 to 980 AD, proving a pre-
European occupation. The islands later experienced
another reintroduction of species with the Portu-
guese and Spanish occupation in the fifteenth century
(Lépez et al. 2013).

The colonisation patterns exhibited by R. rattus
in the other Macaronesia archipelagos demonstrated
diversity within the populations. Evidence suggested
the presence of two distinct haplogroups. Analysis of
the phylogenetic tree indicated that the sample from
Madagascar reveals a link between the Indian Ocean
and the Atlantic Ocean haplogroups, suggesting this
island acted as a stepping-stone in the colonisation of
the species. This finding aligns with the hypothesis
proposed by Russell et al. (2011), which hypothesised
Madagascar as a satellite colony. As the island shows
a high diversity and different haplotypes, this may be
an indication of an old colonization. In fact, Mada-
gascar played a very significant role as a trade hub
during the navigation era (Pollini 2018; Tollenaere
et al. 2010).

The Indian Ocean haplogroup exhibited a high
degree of genetic diversity both within and between

populations. It is evident that the haplotypes exhib-
ited a high degree of interconnectedness, suggesting
a history of multiple introductions into the popula-
tions and gene flow. This phenomenon is indicative
of the origin of the species and a larger ancestral
population as supported by previous studies (Baig
et al. 2019; Gregorius 1987). In contradistinction to
the other samples from Macaronesia, the pattern of
colonisation exhibited by Sao Vicente Island in Cabo
Verde is distinct. This is the first occasion on which
a direct connection with the indigenous populations
of India has been observed in the region, rather than
with Portuguese rats as historically expected, as it
were the Portuguese who discovered the uninhabited
islands around 1460 (Barcellos, 1899). As historical
records demonstrate, Portugal established colonies
in India, in the late fifteenth century. The expedi-
tions were led by Vasco da Gama with the help of
Ahmad Ibn Majid. Portugal established connections
with several coastal regions in India, such as Calicut,
Goa, Daman and Diu, driven by the imperatives of
maritime expansion and controlling commercial trade
routes mainly for spices and tea (Tripati and Godfrey
2007; Cunliffe 2025). Portugal held a monopoly on
the maritime region for at least 100 years until other
European nationalities arrived (Tripati and God-
frey 2007). Following Varudkar and Ramakrishnan
(2015), the Indian sample which shared the same
haplotype with S. Vicente Island (Cabo Verde), was
collect approximately 60 km NE from Cannanore,
a port city in domain of Portugal between 1505 and
1663 (Barcellos, 1899). It has been established that
this specific haplotype was connected to other hap-
lotypes that exhibit a single mutation of difference.
This mutation has been identified in a region approxi-
mately 300 km south of the Western Ghats, where R.
rattus is native. This shared Cabo Verdean haplotype
with India, suggests that an alternative lineage was
introduced into those islands due to their strategic
position. In fact, Vasco da Gama, in his famous first
voyage to India, made a halt in Santiago, a strategic
location for navigating the treacherous waters towards
the Indian subcontinent (Barcellos, 1899). In a similar
manner, Afonso de Albuquerque, on his return jour-
ney from India in 1512, chose Cabo Verde as a rest
stop (Barcellos, 1899). This island was also visited
by Nunes da Cunha, the Governor of India, who, hav-
ing departed Lisbon in 1528, made of Cabo Verde his
temporary residence (Barcellos, 1899). Furthermore,
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Cabo Verde and India have historically enjoyed sig-
nificant connections (Barcellos, 1899). The two
nations were frequently under the command of the
same captain or family. For example, Jodo Corréa de
Sousa, the captain of Calecut, got married in India.
His son subsequently assumed the role of captain in
Cabo Verde (Barcellos, 1899).

With three mutational steps of difference from
the samples of S3o Vicente and one from an Indian
sample in the Indian Ocean haplogroup there is a hap-
lotype from Italy. In the Atlantic Ocean haplogroup
there is another haplotype with two mutational steps
from Santiago Island samples, there are two single-
tons from Italy. Those are, again, probably connected
to European navigations to India. Antonio da Noli,
an Italian navigator, was famous for exploring the
seas. Together with Diogo Gomes, he discovered the
islands of Santiago in Cabo Verde, pursuant to the
demise of his descendant, D. Branca de Aguiar, the
right of possession and control of the island (Bar-
cellos, 1899; Dall’Angola 1990). At the time, Italian
ports served also as stopping points of trips between
Europe, Africa and India. Furthermore, Italy used to
trade with India as well (Dall’Angola 1990; Gupta
et al. 2001).

The Atlantic Ocean haplogroup presented a star-
shaped phylogeny indicating a founder effect, as
well as bottleneck events (Austerlitz et al. 1997; Du
et al. 2021). Furthermore, it suggests that there was a
recent colonisation and population expansion (Colan-
gelo et al. 2015). Most of the samples analysed in this
study (supplementary Table S1) were found to belong
to the Atlantic Ocean haplogroup. The samples from
the Madeira Archipelago, the Azores, Sao Tomé and
Principe, and Brava Island (Cabo Verde) were found
to have the same haplotype as those from mainland
Portugal. Also, it is possible to see some similarities
between mainland and island populations, particularly
associated with samples from Portugal and coastal
Africa, such as Guinea-Bissau. This finding suggests
again the possibility of a colonisation event from the
Portuguese mainland and the Mediterranean region
population due to European navigations (Colangelo
et al. 2015; Russell et al. 2019). The hypothesis was
also advanced that the expected patterns of origin of
the Atlantic Islands were related to populations from
Europe (Portugal) and Africa (Guinea-Bissau), due to
the existence of extensive trade relations across these
regions (Barcellos, 1899).

@ Springer

During the fifteenth century, Portugal travelled
across the oceans and reached the Azores, Madeira,
Cabo Verde, Guinea-Bissau, and Sdo Tomé. The Por-
tuguese then began the process of colonising these
areas and exploiting their natural resources. Agri-
culture was introduced to the islands, particularly in
the Azores, Madeira and Cabo Verde, and they were
established as trading points (Barcellos, 1899; Rod-
rigues et al. 2015; Vieira 2015). The haplotype rep-
resented by samples from Madeira and Italy suggests
that voyages from the Mediterranean to the Atlan-
tic Ocean in search of trade opportunities in coastal
Africa likely introduced the black rat to that archi-
pelago as well (Colangelo et al. 2015). Dall’Angola
(1990) also indicates that Antonio da Noli made stops
at Madeira Archipelago to seek shelter from storms in
the region.

This pattern was also evident in the Mediterranean
populations and in the Canary Islands. A star-shaped
phylogeny was observed in samples from the Medi-
terranean Basin, the Antilles, the Canary Islands and
West Africa in the studies of Colangelo et al. (2015),
Aplin et al. (2011) and by Lopez et al. (2013), using
the D-loop region and the cyt b gene. Samples from
Europe, the Americas, and Oceania shared the same
haplotype, indicating that the same lineage of R. rat-
tus colonised Europe, the Americas, Oceania, and
West Africa aided by human navigations (Baig et al.
2019). A similar pattern was also seen with differ-
ent vertebrates, such as with the introduction of the
tropical house gecko Hemidactylus mabouia, and the
Moorish gecko Tarentola mauritanica, and associated
with European trade routes (Pinho et al. 2023; Rato
et al. 2023).

Samples from Fogo and Santiago islands in Cabo
Verde showed mutations that were specific to each
island. These mutations derived from a central hap-
lotype and only differed by one mutational step in
each case. The haplotype from Fogo Island repre-
sented a singleton, indicating possible in situ diver-
sification of this population. The haplotype detected
in Santiago was shared with samples from Sdo Tomé
and Principe, as well as with those from New Zea-
land. This supported the hypothesis of Russell et al.
(2019) that European navigators carried the species
across the oceans, probably when coming from East
to West. However, this pattern differed from the oth-
ers mentioned because connected to this haplotype
there is a singleton from Portugal, likely indicating
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a posterior introduction to the mainland from the
Atlantic Islands. It was also different from other ter-
restrial vertebrates introduced in Cabo Verde, which
presented the same mutation as Guinea-Bissau sam-
ples, as the case of the African common toad Scle-
rophrys regularis and the green monkey Chlorocebus
sabaeus (Vasconcelos et al. 2010b; Almeida et al.
2024). Finally, in this study, the Latin American pop-
ulation showed similarities with the Macaronesian
population as well. Similar patterns of colonisation
from southern Europe towards Latin America have
been observed in R. rattus and M. musculus in pre-
vious studies (Aplin et al. 2011; Gatto-Almeida et al.
2020; Gabriel et al. 2024). In this study, it was possi-
ble to identify sequences from Brazil (Gatto-Almeida
et al. 2020) in the central haplotype of Atlantic Ocean
group, as well as a haplotype that was shared with
New Zealand (Robins et al. 2016; Russell et al. 2019).
This can be explained because during the era of Euro-
pean navigations, the Macaronesia region was a stra-
tegic stopover on routes to Brazil (Barcellos, 1899).
This study yielded valuable insights into the ori-
gin and colonisation patterns of R. rattus in Maca-
ronesia, with a focus on its association with human
navigation. Notably, this study used opportunis-
tic sampling in a poorly sampled area for the first
time. However, the intentional collection of sam-
ples from all the islands in these regions would
provide more conclusive evidence as to how the
species arrived in the archipelagos. Some new hap-
lotypes might be discover, especially if the species
is found in other unsampled islands. As some were
colonised in different years, they may have a differ-
ent link with either close islands from these Maca-
ronesian or other Atlantic archipelagos, with Euro-
pean or African sources and provide a better idea
of the human history of this region. Consequently,
further research is required to investigate and moni-
tor the presence of R. rattus within the archipela-
gos and to achieve a more profound comprehension
of the impact exerted. There is already evidence of
the negative ecological and economic impact of M.
musculus in Cabo Verde (Pinho et al. 2022). A fur-
ther study has indicated that R. rattus has had the
greatest impact on the fauna and flora of the Canary
Islands (Traveset et al. 2009). Morphological analy-
ses are also required to ascertain whether there are
any morphological adaptations of the species to the
archipelagos, as previously suggested for the black

rat introduced to Pacific Ocean islands (Pergams
et al. 2015). The maternally inherited mitochondrial
marker furnished one segment of the data necessary
to trace the colonisation of the black rat (Tollen-
aere et al. 2010). Nevertheless, the incorporation of
nuclear markers would furnish additional biparental
information concerning the number of introductions
on the islands.

Finally, it is imperative to devise a management
plan with the objective of eradicating this invasive
species from the islands. It is thus recommended to
include regular surveys to detect the species in the
conservation action plans of all the protected areas of
this region, especially in those where these surveys
were never conducted and have higher conservation
importance, such as in the integral reserves of the
Cabo Verde Islands. The genetic material collected
in this study can be used for conservation purposes.
If eradication occurs on the islands, there will be
genetic material to monitor new reintroductions and
provide clues to the sources of introduction, espe-
cially if recovered haplotypes are common in specific
locations. In a study by Olivera et al. (2010), the M.
musculus was successfully eradicated from Selvagens
Islands. This was achieved through the use of baits
and traps, followed by a significant period of monitor-
ing to ensure the complete eradication of the species.
It is therefore theoretically possible to eradicate the
black rats in the Macaronesia Islands which are small
and uninhabited, such as on Rombo’s islets in Cabo
Verde, if their presence is confirmed.
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