

An updated inventory of the vascular flora of the Island of Montecristo (Tuscan Archipelago, Italy)

Eugenio Siccardi¹, Giulio Ferretti², Bruno Foggi¹, Michele Mugnai¹,
Maria Rosaria Pasqualina Bardaro³, Marco Landi⁴, Giovanni Quilghini⁵,
Antonio Zoccola⁶, Lorenzo Lazzaro¹

1 Department of Biology, University of Florence, Via G. La Pira 4, I-50121, Florence, Italy **2** Natural History Museum, Botanical Garden, University of Florence, Via G. La Pira 4, 50121, Florence, Italy **3** Department of Veterinary Medicine and Animal Production, University of Naples Federico II, 80137, Naples, Italy **4** Carabinieri Biodiversity Department, Siena, Via Cassia Nord 7, I-53100, Siena, Italy **5** Carabinieri Biodiversity Department, Follonica, Via E. Bicocchi 2, I-58022, Grosseto, Italy **6** Carabinieri Biodiversity Department, Pratovecchio, Via Dante Alighieri 41, I-52015, Arezzo, Italy

Corresponding author: Eugenia Siccardi (eugenio.siccardi@unifi.it)

Academic editor: Lorenzo Peruzzi | Received 18 October 2024 | Accepted 7 January 2025 | Published 19 March 2025

Citation: Siccardi E, Ferretti G, Foggi B, Mugnai M, Bardaro MRP, Landi M, Quilghini G, Zoccola A, Lazzaro L (2025) An updated inventory of the vascular flora of the Island of Montecristo (Tuscan Archipelago, Italy). Italian Botanist 19: 87–106. <https://doi.org/10.3897/italianbotanist.19.139675>

Abstract

We present an updated inventory of the vascular flora of the island of Montecristo (Tuscan Archipelago, Italy). The inventory has been updated based on a comprehensive bibliographical revision of floristic floras and previous inventories, together with the revision of herbarium specimens already preserved in Tuscan Herbaria and the implementation of survey campaigns carried out on the island between 2011 and 2024. The inventory counts 582 specific and subspecific taxa currently present on the island (including 515 spontaneous taxa and 67 cultivated ones), the highest number of species ever recorded on the island. Since 2000, 45 new to Montecristo Island, and 28 species confirmed after one century. We excluded 14 species, 8 of which were the result of a revision of herbarium material, which led to the correction of previous erroneous identification or due to the description of new taxa, such as *Saxifraga montis-christi* Mannocci, Ferretti, Mazzoncini & Viciani. The characterisation of the flora of Montecristo is consistent with the Mediterranean climate of the island in terms of life forms and chorotypes. The analysis showed that the main geographical distribution elements are Eurosiberian-Mediterranean and Mediterranean species, while the predominant life form is the therophyte. From a floristic point of view within the Tuscan Archipelago, Montecristo is the poorest island in terms of species and has the highest amount of endemism in relation to its surface area.

Keywords

Alien plant species, biodiversity, endemics, floristic studies, Mediterranean island, taxonomy

Introduction

The production of easily accessible plant species lists, such as databases and floristic inventories, is fundamental to knowing and quantifying plant biodiversity (Kier et al. 2005). Floristic inventories contain fundamental information on the ecology of a geographical area and could also be important in ensuring and managing the conservation of the biodiversity of the studied site (Mayer 2016; Peruzzi 2018). Particularly, the Mediterranean is a hotspot of diversity, including thousands of islands and islets (Brundu et al. 2013) that are home to a high rate of endemic plant species (50–59%: Médail and Quézel 1997; Médail 2013) and vulnerable species that are worthy of conservation (Foggi et al. 2015). The archipelagos of the Mediterranean are therefore important examples of circumscribed geographical areas where knowledge of biodiversity needs to be increased and deepened to preserve their biological values (Valavanidis and Vlachogianni 2011). The Tuscan Archipelago consists of seven islands and several islets, all with a significant naturalistic value and richness (Arrigoni et al. 2003). The Archipelago has been the subject of historical and intensive interest, accumulating a substantial quantity of botanical data. This begins with Sommier's work at the beginning of the last century and continues to the present day. This data allows us to trace changes in the archipelago's flora until the most recent socio-economic changes after the Second World War. These changes have significantly increased anthropogenic pressure on the islands, leading to modifications in their landscape and vegetal composition (Chiarucci et al. 2017). In recent decades, the Tuscan Archipelago's landscape has changed due to rapid socio-economic dynamics that have shifted from agro-pastoral land use to a more tourism-industrial approach (Carta et al. 2018). This change in land use enhanced anthropogenic direct and indirect impacts on insular biotas, and local floristic shift, e.g. caused by an increase of alien species (Lazzaro et al. 2014). These impacts are exacerbated by the insularity of these areas, with a highly concentrated sample of natural features that are more vulnerable than those on the mainland (Drake 2002). This study presents an updated list of the spontaneous and cultivated vascular plants occurring on Montecristo, one of the seven major islands of the Tuscan Archipelago. Montecristo is among the least-known islands of the Archipelago from a botanical point of view due to its location, history, and morphological characteristics that have not facilitated its exploration. From a geobotanical perspective, Montecristo Island is situated in the western Mediterranean vegetation zone. The island is largely devoid of vegetation, with a discontinuous cover consisting mainly of cryptogamic vegetation. Notably, mosses and lichens are abundant, covering almost all the rocky outcrops and scrub. Although there are some scattered trees, there are no true tree formations. Approximately 200 scattered and relic holm oaks can be found across the island, particularly in the upper or mid-upper sections of the Collo dei Lecci and Collo Fondo valleys. These trees represent the remnants of an ancient holm oak forest (Crudele et al. 2005), with radiocarbon dating indicating a range of 430 to 742 years old (Filibek et al. 2023). Montecristo occupies a distinctive position in the phytogeographical context, acting as a transition zone between the Mediterranean-western and central-east-

ern floristic elements (Arrigoni 1972). Indeed, the study of the floristic knowledge of the Tuscan Archipelago has also experienced a renewed interest recently, leading to the production of updated inventories (Carta et al. 2018) or dedicated contributions (Lazzaro et al. 2021). Although the last published flora for Montecristo dates back to 1976, studies of its vegetation have continued (Filibek et al. 2023). Moreover, ongoing exploratory visits to the island (and other islands of the Tuscan archipelago) have led to the discovery of many new records and the confirmation of previously documented species (Peruzzi et al. 2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018, 2023).

This work aims to synthesise historical data, derived from the literature and herbarium specimens, with more recent data, largely unpublished, collected during the last ten years of exploration.

Materials and methods

Study area

The island of Montecristo (Tuscany, Italy) is situated in the Tyrrhenian Sea (42°19'N, 10°19'E), west of the Tuscan coast. The island of Montecristo has been subjected to a specific regime of protection, being an integral reserve of the former State Forestry Corp (now Comando Unità Forestale, Ambientale e Agroalimentare (CUFAA) of the Arma dei Carabinieri) in 1971, and it is currently included in the Tuscan Archipelago Park, which was established in 1996. Montecristo, formed by a magmatic intrusive body, has a surface extension of 10.4 km², is mainly mountainous and vaguely rectangular, divided in half asymmetrically by a mountainous ridge whose peaks are the Cima della Fortezza (645 m a.s.l.) and the Cima dei Lecci (563 m a.s.l.). The remarkable geological uniformity is reflected in the pedology of the island (Innocenti et al. 1997). Soils derived from granite are generally sandy and very poor in Ca and assimilable P, instead possessing high levels of alkaline bases (Mittempergher 1954), with a neutral-acid reaction (Crudele et al. 2005). The soils of Montecristo therefore appear homogeneous, superficial and poorly developed, due to the little organic substance that allows the formation of little humus, which is also affected by the island's high temperatures during the summer season (Paoli and Romagnoli 1976).

Vegetation

The vegetation of Montecristo is predominantly a degraded and uniform Mediterranean scrub. It consists of a tall and often impenetrable fragmentary form of *Erica arborea* L. and *Erica scoparia* L. subsp. *scoparia*. These are interspersed to varying degrees with a low shrub component dominated by *Salvia rosmarinus* Spenn., *Cistus monspeliensis* L., *Teucrium marum* L., *Helichrysum italicum* (Roth) G.Don and, more rarely, *Cistus salviifolius* L. The most extensive formations are under the Monte della Fortezza, above Cala S. Maria, Cala della Fortezza and Cala Maestra. The low shrub

with a dominance of *Cistus* forms an open garigue that tends to close in areas with a weak slope. The garigue in this area is characterised by shrubs of *Teucrium marum* and an underlying carpet of scattered grasses. This ecosystem is associated with the endemic steno-tirrenic *Carduus fasciculiflorus* Viv. In areas that are regularly affected by meteoric water inflow, temporary ponds are found. These ponds are characterized by the presence of endemic *Mentha requienii* Benth. subsp. *bistaminata* Mannocci & Falconcini, *Isoëtes durieui* Bory, and some species of annual rushes. Although relatively widespread, they are fragmented and spread over small areas. In the flat areas of the ridge, at the edges of shrub clusters, where outcropping rock prevents plant growth, there are thermophilic grasslands dominated by annual *Plantago* sp. pl. and *Tuberaria guttata* (L.) Fourr. The vegetation found on damp and shady cliffs is characterised by *Arenaria balearica* L. and *Cymbalaria aequitriloba* (Viv.) A.Chev. subsp. *aequitriloba*. The halophilous vegetation along the coastal strip develops in an extremely fragmented manner and is characterised by the presence of the endemic *Limonium sommierianum* (Fiori) Arrigoni. The island is home to endemic species such as *Saxifraga montis-christi* and *Hieracium racemosum* Waldst. & Kit. ex Willd. subsp. *amideii* Gottschl., Gonnelli & Zoccola, but also shares endemics like *Linaria capraria* Moris & De Not. and several other taxa found in western Mediterranean islands (Paoli 1975). The latter group includes Sardinian-Corsican and Sardinian-Balearic endemisms such as *Arenaria balearica*, *Arum pictum* L.f. subsp. *pictum*, *Carduus cephalanthus* Viv., *Carduus fasciculiflorus*, *Cymbalaria aequitriloba*, *Mentha requienii* subsp. *bistaminata*, *Scrophularia trifoliata* L., *Verbascum conocarpum* Moris subsp. *conocarpum* (Peruzzi et al. 2014a). The ancient colonisation of the island was mainly of Sardinian-Corsican origin, as evidenced also by the distribution of plant species such as *Alkanna lutea* Moris, *Fumaria bicolor* Sommier, *Sedum andegavense* (DC.) Desv., and *Teucrium marum*, which have a mostly western Mediterranean gravitation (Arrigoni 1972).

Floristic inventories and literature search

A comprehensive bibliographic revision of floristic floras and inventories was conducted, along with the revision of specimens already preserved in the Tuscan Herbaria of Florence (FI) and Siena (SIENA) (international code according to Thiers 2020, and onwards) the examination of reports from various contributors, and the implementation of survey campaigns specifically designed for this study. The revision of the national floras included Fiori (1923–1929), Bertoloni (1833–1854), and Fiori and Béguinot (1909, 1910). Additionally, local floras were consulted, including Caruel (1860–1864), Caruel (1864), Béguinot (1901), Sommier (1902), and Briquet (1910). Furthermore, publications that might contain floristic data for Montecristo were considered, such as Toschi (1953). The initial contribution to the flora of Montecristo, ascribed to Giuseppe Giuli (1764–1842), could not be located in the *Indicatore Sanese* (Giuli 1833). The only extant volume was found to be lacking the pages enumerating the plants. However, the data, about 24 species he documented, were extrapolated from Bertoloni (1833–1854). The examined bibliographical data on Montecristo include Fabbri (1963, 1966); Paoli

and Romagnoli (1976); Paoli and Ciuffi Cellai (1976); Sartori (1978); Filipello and Sartori (1983); Viegi and Cela Renzoni (1981); Landi et al. (2008), as well as Peruzzi et al. (2011, 2012, 2014b, 2014c, 2015, 2016, 2017, 2018, 2019, 2023). The research, for taxa of any rank, was initially conducted using the following sources: Fiori and Paoletti (1902–1904); Fiori (1923–1929); Parlatore and Caruel (1848–1881); Arcangeli (1882–1894); Bertoloni (1833–1854); Baroni (1897); Caruel (1860–1864); Sommier (1902, 1903). Furthermore, for some authors, such as Sommier and Caruel, prominent botanists of the Tuscan Archipelago, the same search was conducted for any monographic contributions that might contain new taxa described for Montecristo Island. Examples of this include Sommier (1890, 1891, 1894, 1895, 1897, 1898, 1899, 1901, 1902, 1903, 1905, 1910, 1915). Following the literature review, survey campaigns were conducted on the island in 2016 and 2024. The subsequent identification of the samples collected during the field surveys, as well as samples collected from 2000 to the present day by the research group of the Department of Biology of the University of Florence, contributed to the expansion of the floristic knowledge of Montecristo.

Nomenclature

The data collected during the research may show inconsistent nomenclature. To update the nomenclature, we primarily used the directories available on the web, such as Portal to the Flora of Italy 2024.2 (<https://dryades.units.it/floritaly/>), which derives from Checklists of the native and alien floras of Italy (Bartolucci et al. 2024; Galasso et al. 2024), and their most recent updates (Bartolucci et al. 2024b; Galasso et al. 2024b). When we could not verify the correctness of the nomenclature with this database, we used The International Plant Names Index (IPNI; <http://www.ipni.org/>) as an alternative. The definition of alien status follows the definitions in Pyšek et al. (2004). For the preparation of Suppl. material 2, which includes the cultivated species of Montecristo, we refer to Plants of the World Online (POWO, 2024), as this appendix also includes species that are not treated in the Portal to the Flora of Italy 2024.2. The complete data sets collected for this study are available in Suppl. materials 1, 2.

Data analysis

The counts included species that had been previously reported, new reports, species that had not been found again, and species that were to be excluded. The species considered as cultivated exotics have been excluded from the analyses but are indicated in Suppl. material 2. A critical analysis of all the different sources of information was conducted. This analysis aimed to standardise their taxonomic and nomenclatural characteristics and to correct them where necessary based on the direct examination of critical findings. Species richness was expressed by the species-area relationship (SAR), based on the Arrhenius power function (D'Antraccoli et al. 2019). We used the best-performing constants of the Power function $S = c A^z$ (Arrhenius 1921), according to D'Antraccoli et al. (2024). The SAR was calculated for the whole flora and then separately for native

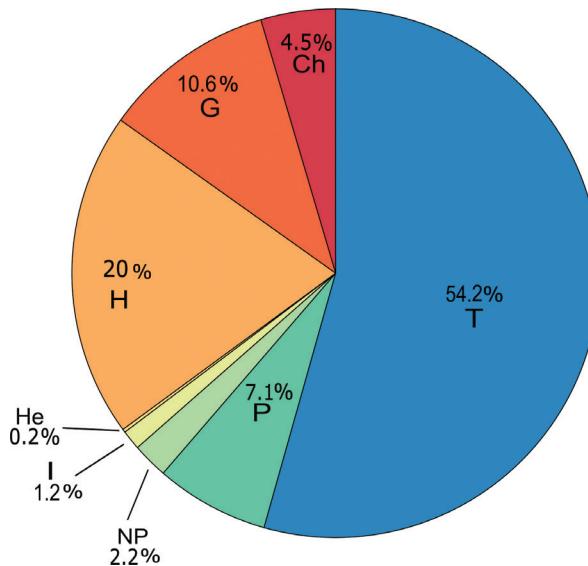
and alien species. The constants used for this function are $c = 241.2$ and $z = 0.281$ for the whole flora, $c = 245.2$ and $z = 0.263$ for native species, and $c = 10.1$ and $z = 0.404$ for alien species (D'Antraccoli et al. 2024). For each taxon included in the updated checklist, we recorded the following details: chorology, life form, historical and current occurrence, type of environment in which it was found, and frequency. To ascertain whether there was a significant association between two categorical variables, namely occurrence (historical or current), chorology (Pignatti et al. 2019), and life form (Pignatti et al. 2019), a χ^2 test of independence was applied. For analytical purposes, plant occurrences were classified into two main groups: confirmed species and species no longer found. To evaluate temporal trends across confirmed taxa and variation in the distribution of chorotypes, biological forms and families, a χ^2 test of independence was also applied. All analyses were performed with the software R (R RStudio 2023.12.1).

Results

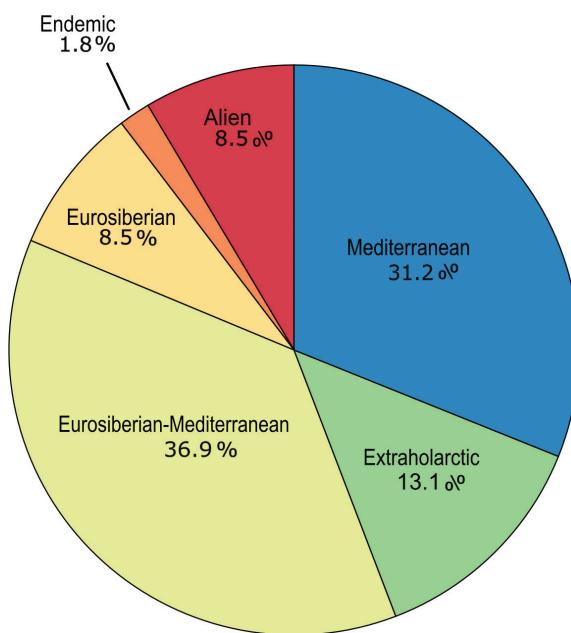
A total of 584 vascular plant species resulted for Montecristo, of which 515 are spontaneous and 67 cultivated. Of the 515 spontaneous species, 14 are considered *excludendae*, therefore definitively excluded from the present flora of Montecristo, *Carex pendula* Huds., *Carpobrotus acinaciformis* (L.) L.Bolus, *Cneorum tricoccon* L., *Erica multiflora* L., *Erigeron canadensis* L., *Euphorbia dendroides* L., *Geranium robertianum* L., *Opuntia ficus-indica* (L.) Mill., *Oxalis violacea* L., *Polypogon maritimus* Willd. subsp. *maritimus*, *Saxifraga granulata* L. subsp. *granulata*, *Teucrium flavum* L., *Sedum hirsutum* All. subsp. *hirsutum*, and *Teucrium fruticans* L. subsp. *fruticans*.

The following calculation and analysis results have been obtained excluding the cultivated species and *excludendae*, therefore considering 501 species currently occurring on the island of Montecristo. During the exploratory visits carried out on Montecristo since 2000, 45 taxa new to Montecristo have been recorded and another 28 have been confirmed since their last record dates back to 1903 or 1864 (Table 1).

Among the newly recorded species, 9 (*Carex microcarpa* Bertol. ex Moris, *Erigeron canadensis* L., *Geranium purpureum* Vill, *Montia hallii* (A.Gray) Greene, *Opuntia monacantha* Haw., *Oxalis articulata* Savigny, *Polypogon subspathaceus* Req., *Saxifraga montis-christi* Mannocci, Ferretti, Mazzoncini & Viciani) resulted from the revision of the herbarium material, which led to the correction of previous erroneous identifications or even to the highlighting of the existence of new taxa. In the case of *Dactylis glomerata* L. the revision of herbarium specimen led to the identification of two subspecies: *D. glomerata* L. subsp. *glomerata*, and *D. glomerata* L. subsp. *hispanica* (Roth) Nyman. Besides, there have also been significant nomenclatural changes within the species already recorded, reflecting new knowledge, for example, the most frequent nomenclatural changes concern the attribution to a different genus, as in the case of *Calystegia soldanella* (L.) Roem. & Schult., *Aethorhiza bulbosa* (L.) Cass., and *Hedysarum coronarium* L., which are now recognised as *Convolvulus soldanella* L., *Sonchus bulbosus* (L.) N.Kilian & Greuter subsp. *bulbosus*, and *Sulla coronaria* (L.) B.H.Chi & H.Ohashi, respectively.


Table 1. New vascular species identified on Montecristo Island since 2000. For each entry, the type of report (new or confirmed) is indicated, together with the status and date of publication.

Taxon	Type of report	Year of publication
<i>Amaranthus deflexus</i> L.	Confirmed, last record in 1903	2015
<i>Anthoxanthum ovatum</i> Lag.	New record	2018
<i>Aphanes minutiflora</i> (Azn.) Holub	New record	Unpublished
<i>Astragalus pelecinus</i> (L.) Barneby subsp. <i>pelecinus</i>	Confirmed, last record in 1903	2017
<i>Austrocylindropuntia subulata</i> (Muehlenpf.) Backeb.	New record	2014
<i>Callitricha brutia</i> Petagna	New record	2018
<i>Callitricha stagnalis</i> Scop.	New record	2018
<i>Campsis radicans</i> (L.) Bureau	New record	2014
<i>Carduus pycnocephalus</i> L.	Confirmed, last record in 1903	2013
<i>Carex microcarpa</i> Bertol. ex Moris	New record, previously attributed to <i>C. pendula</i>	2012
<i>Catapodium pauciflorum</i> (Merino) Brullo, Giusso, Miniss. & Spamp.	New record	Unpublished
<i>Centaurea melitensis</i> L.	Confirmed, last record in 1903	2014
<i>Centaurium tenuiflorum</i> (Hoffmanns. & Link) Fritsch	New record	Unpublished
<i>Cerastium diffusum</i> Pers. subsp. <i>diffusum</i>	New record	2014
<i>Clematis vitalba</i> L.	New record	2017
<i>Convolvulus arvensis</i> L.	New record	2017
<i>Convolvulus siculus</i> L.	New record	2017
<i>Daucus carota</i> subsp. <i>drepanensis</i> (Arcang.) Heywood	New record	Unpublished
<i>Dactylis glomerata</i> L. subsp. <i>glomerata</i>	New record, previously attributed to <i>D. glomerata</i>	Unpublished
<i>Dactylis glomerata</i> L. subsp. <i>hispanica</i> (Roth) Nyman	New record, previously attributed to <i>D. glomerata</i>	Unpublished
<i>Equisetum ramosissimum</i> Desf.	Confirmed, last record in 1903	2017
<i>Erigeron bonariensis</i> L.	New record, previously attributed to <i>E. canadensis</i>	2013
<i>Erodium moschatum</i> (L.) L'Hér.	Confirmed, last record in 1903	2015
<i>Eryngium maritimum</i> L.	Confirmed, last record in 1903	2014
<i>Euphorbia maculata</i> L.	New record	2023
<i>Euphorbia prostrata</i> Aiton	New record	2018
<i>Euphorbia serpens</i> Kunth	New record	2018
<i>Galium scabrum</i> L.	Confirmed, last record in 1903	2017
<i>Geranium purpureum</i> Vill.	New record, previously attributed to <i>G. robertianum</i>	2018
<i>Herniaria hirsuta</i> L. subsp. <i>hirsuta</i>	New record	2023
<i>Hieracium racemosum</i> Waldst. & Kit. ex Willd. subsp. <i>amideii</i> Gottschl., Gonnelli & Zuccola	New record	2019
<i>Hypericum hircinum</i> L.	Confirmed, last record in 1903	2012
<i>Isoëtes durieui</i> Bory	Confirmed, last record in 1903	2012
<i>Juncus pygmaeus</i> Rich. ex Thuill.	New record	2014
<i>Lepidium didymum</i> L.	New record	2011
<i>Lolium multiflorum</i> Lam.	New record	Unpublished
<i>Lythrum hyssopifolia</i> L.	Confirmed, last record in 1903	2015
<i>Malva parviflora</i> L.	Confirmed, last record in 1903	2018
<i>Malva sylvestris</i> L.	Confirmed, last record in 1903	Unpublished
<i>Medicago minima</i> (L.) L.	Confirmed, last record in 1903	2018
<i>Neotinea maculata</i> (Desf.) Stearn	New record	2014
<i>Ophioglossum lusitanicum</i> L.	Confirmed, last record in 1903	2014


TAXON	TYPE OF REPORT	YEAR OF PUBLICATION
<i>Opuntia monacantha</i> Haw.	New record, previously attributed to <i>O. ficus-indica</i>	2014
<i>Osmunda regalis</i> L.	Confirmed, last record in 1864	2012
<i>Osyris alba</i> L.	New record	2016
<i>Oxalis articulata</i> Savigny	New record, previously attributed to <i>O. violacea</i>	2014
<i>Oxalis debilis</i> Kunth	New record	2018
<i>Oxalis dillenii</i> Jacq.	New record	2018
<i>Phelipanche ramosa</i> (L.) Pomel	New record	2019
<i>Phoenix canariensis</i> H.Wildpret	New record	Unpublished
<i>Poa annua</i> L.	Confirmed, last record in 1903	2018
<i>Poa bulbosa</i> L.	Confirmed, last record in 1903	2014
<i>Polygonum maritimum</i> L.	Confirmed, last record in 1903	2017
<i>Polypogon subspathaceus</i> Req.	New record, previously attributed to <i>P. maritimus</i>	2018
<i>Polypogon viridis</i> (Gouan) Breistr. subsp. <i>viridis</i>	Confirmed, last record in 1903	2018
<i>Potentilla reptans</i> L.	Confirmed, last record in 1903	2017
<i>Rhagadiolus stellatus</i> (L.) Gaertn.	Confirmed, last record in 1903	2017
<i>Romulea columnae</i> Sebast. & Mauri	Confirmed, last record in 1903	2013
<i>Rostraria cristata</i> (L.) Tzvelev	Confirmed, last record in 1903	2013
<i>Salsola tragus</i> L.	New record, previously attributed to <i>S. kali</i>	2018
<i>Saxifraga montis-christi</i> Mannocci, Ferretti, Mazzoncini & Viciani	New record, previously attributed to <i>S. granulata</i>	2016
<i>Serapias vomeracea</i> (Burm.f.) Briq.	New record	2014
<i>Silybum marianum</i> (L.) Gaertn.	New record	2017
<i>Solanum lycopersicum</i> L.	New record	2015
<i>Trifolium scabrum</i> L.	Confirmed, last record in 1903	2018
<i>Trifolium tomentosum</i> L.	Confirmed, last record in 1903	2018
<i>Trigonella smallii</i> Coulot & Rabaute	Confirmed, last record in 1903	2018
<i>Triticum turgidum</i> L. subsp. <i>durum</i> (Desf.) Husn.	New record	2018
<i>Urtica atrovirens</i> Req. ex Loisel.	New record	2013
<i>Urtica membranacea</i> Poir.	New record	2015
<i>Valerianella microcarpa</i> Loisel.	New record	2015
<i>Viburnum tinus</i> L. subsp. <i>tinus</i>	Confirmed, last record in 1903	Unpublished
<i>Vicia faba</i> L.	New record	Unpublished

According to the SAR formula, overall, we obtained +7.6% taxa compared to the expected value of 465 considering the total of spontaneous and non-cultivated species. Moreover, for native species, we obtained +3.56% taxa compared to the expected value of 453. We obtained +19.21% taxa for alien species compared to the expected value of 26. Among taxa of Montecristo, life forms are not equally distributed ($p < 0.001$). Results show that the predominant form is the therophytes, which account for 54.2% of the total, with 273 taxa. All results are presented in Fig. 1.

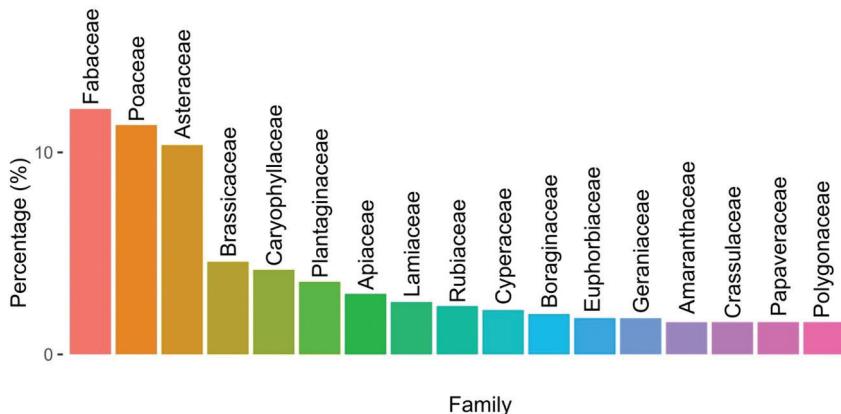

Chorotypes are also not equally distributed ($p < 0.001$) and analysis revealed that the major geographical distributional elements are represented by 36.9% of Eurosiberian-Mediterranean and 31.2% of Mediterranean species. All results are presented in Fig. 2.

Figure 1. Percentage of life forms of spontaneous vascular species on Montecristo Island. Life form legend: Ch = Chamaephytes, G = Geophytes, H = Hemicryptophytes, He = Helophytes, I = Hydrophytes, NP = Nanophanerophytes, P = Phanerophytes, T = Therophytes.

Figure 2. Percentage of chorotypes of spontaneous vascular species on Montecristo Island. Legend of chorological types: Alien = alien species; Endemic: Italian endemic; Eurosiberian: species showing range within the Eurosiberian floristic region; Eurosiberian-Mediterranean: species showing range across Eurosiberian and Mediterranean floristic regions; Extraholarctic: species showing range larger than Holarctic floristic kingdom; Mediterranean: species showing range within the Mediterranean floristic region.

Figure 3. Percentage of the 17 most common families on Montecristo Island, representing 60% of the total. Only families containing eight or more genera present on the island of Montecristo and individually accounting for more than 1.5% of the total are included.

We found that also families are not equally distributed ($p < 0.001$), where Fabaceae (12.15%), Poaceae (11.35%), and Asteraceae (10.36%) are the most abundant (Fig. 3). Families are significantly associated with life forms ($p < 0.001$), Fabaceae, Poaceae and Asteraceae are mostly represented by therophytes and then hemicryptophytes.

Life forms are significantly associated ($p < 0.001$), with chorotypes: Mediterranean and Eurosiberian-Mediterranean taxa are mostly represented by therophytes (53% and 62% respectively). Italian endemics are mostly hemicryptophytes (44%) and chamaephytes (33%), while alien taxa are mostly represented by therophytes, phanerophytes and geophytes (more than 85% altogether).

Italian endemics (as defined by Peruzzi et al. 2014a), collectively account for 1.8% of the total. Details are summarised in Table 2.

Alien taxa account for 8.53% of the total, counting 30 spontaneous species. 22 species are listed in the checklist of the alien flora of the Tuscan Archipelago (Lazzaro et al. 2013), two units (*Conringia orientalis* (L.) Andr. ex DC. and *Vicia lens* (L.) Coss. & Germ.) were no longer found since the first report in 1903 and 1957 respectively, and seven species are new reports from 2012 to 2023. A full list of these species is provided in Suppl. material 1. Temporal analysis was performed looking for correlations and variations in the distribution of chorological types, biological forms and families of species over time. Results show that only alien species varied significantly, increasing over time ($p < 0.001$).

Discussion

The earliest known botanical information on Montecristo dates back to 1832, when Giuseppe Giuli conducted a brief excursion on the island and subsequently used the data he collected to supplement Antonio Bertoloni's Flora Italica (1837–1854) (Paoli and

Table 2. List of taxa endemic and subendemic to Montecristo Island. For each taxon, its phytogeographic importance and its distribution in Tuscany and the Tuscan Archipelago are indicated.

Species	Phytogeographic relevance	Distribution in Tuscany and the Tuscan Archipelago
<i>Carduus fasciculiflorus</i> Viv.		Occurring in Tuscany only in Montecristo, where it is relatively abundant
<i>Carex microcarpa</i> Bertol. ex Moris		Occurring in Tuscany only in the Tuscan Archipelago: in Montecristo Elba, and Capraia, in the past also reported in Giglio where it has not recently been found
<i>Hypericum hircinum</i> L. subsp. <i>hircinum</i>	Corsican	Occurring in Tuscany only in the Tuscan Archipelago: in Montecristo and Elba
<i>Scrophularia trifoliata</i> L.	Sardinian domain	Occurring in Tuscany only in the Tuscan Archipelago: in Montecristo and Gorgona
<i>Verbascum conocephalum</i> Moris subsp. <i>conocephalum</i>		Occurring in Tuscany only in the Tuscan Archipelago: in Montecristo and Elba
<i>Limonium sommierianum</i> (Fiori) Arrigoni		Occurring in Giannutri, Giglio and Montecristo
<i>Linaria capraria</i> Moris & De Not.		Occurring in Capraia, Giglio, Elba, Pianosa and Montecristo. The presence in Gorgona is doubtful
<i>Mentha requienii</i> Benth. subsp. <i>bistaminata</i> Mannocci & Falconcini	Endemic to the Tuscan Archipelago	Occurring in Capraia and Montecristo
<i>Saxifraga montis-christi</i> Mannocci, Ferretti, Mazzoncini & Viciani		Occurring only in Montecristo
<i>Hieracium racemosum</i> Waldst. & Kit. ex Willd. subsp. <i>amideii</i> Gottschl., Gonnelli & Zoccola	Endemic to Montecristo	Occurring only in Montecristo

Romagnoli 1976). The first list of vascular plants compiled for the island of Montecristo, comprising 343 species, was produced by Caruel (1864). In Sommier (1902, 1903), Montecristo was documented to have 406 described species. A subsequent list of vascular plants dedicated to Montecristo was published by Paoli and Romagnoli (1976). This list described 471 units, excluding the species cultivated around the habitation area of Cala Maestra. Subsequent additions to this list were published by Sartori (1978), resulting in 489 species. A total of 582 species were counted in this work, of which 501 are considered as spontaneous vascular plants of Montecristo's flora, obtained from a synthesis of bibliographic sources with directly verified observations, but excluding cultivated taxa and species considered as *excludenda*. Notably, five species excluded from this checklist (*Cneorum tricoccon*, *Erica multiflora*, *Euphorbia dendroides*, *Teucrium flavum* and *Teucrium fruticans*) were previously reported by Giuli (1833), however, they probably are the result of labelling or identification errors as they are all characterised by a preference for calcareous habitats, which is an unlikely scenario on an island that is almost exclusively granitic. On the other hand, *Carpobrotus acinaciformis* was excluded from the floristic list because it is no longer present after its eradication in 2014 (Sposimo et al. 2014). Regarding the new report for the island, it is worth noting the case of *Saxifraga granulata* L., a species recently excluded from the flora of Montecristo and replaced by the *Saxifraga montis-christi* (Mannocci et al. 2016). Additionally, *Geranium purpureum* was observed during a vegetation survey conducted in 2005, following a period during which it had not

been recorded in previous works. The *exsiccata* preserved in the Herbarium of Florence were therefore studied together with those of a related species, *Geranium robertianum*. Through this process, it was concluded that all the specimens previously attributed to *G. robertianum* were, in fact, *G. purpureum* (Peruzzi et al. 2018). Lastly, some names have also been re-evaluated based on nomenclatural priority. An example of a name change is *Sagina subulata* (Sw.) C.Presl, which is now known as *Sagina hawaiiensis* Pax.

A comparison of Montecristo with the floras of the Tuscan Archipelago reveals that, in terms of the number of species per km², Montecristo shares the lowest species number with Giannutri (Carta et al. 2018), although the decrease in floristic diversity on Montecristo is more drastic than on other islands and cannot be justified based on its size alone (Arrigoni et al. 2003). However, it should be noted that according to a SAR approach (D'Antraccoli et al. 2024), we recorded a slightly higher number of species than expected. Further factors are therefore required to explain this phenomenon. Montecristo is the most distant of the islands from the mainland coast, situated approximately 63 km away from mainland Tuscany. It is the least studied from a botanical perspective due to its remote location and distinctive morphological characteristics, which have hindered exploration over time. Additionally, there are areas within the island that are inaccessible, and for which floristic data are scarce. Also, the substrate is characterised by homogeneity, with the vast majority of the island's terrain comprising granite (Innocenti et al. 1997). This geological composition gives rise to soil layers of a siliceous nature that prove limiting for obligate chalcophiles. It seems reasonable to suggest that a further limitation to the floristic development of the island is probably due to the considerable biological imbalance that has occurred on the island as a result of the increase in the alien faunal component (goats and mice) and the expansion of the invasive plant species *Ailanthus altissima* (Mill.) Swingle. Further targeted studies would be required to confirm this hypothesis and assess the impact of the fauna component on the island's vegetation. Nevertheless, following the eradication of black rat *Rattus rattus* Linnaeus, 1758 by the LIFE Project 'Montecristo 2010', there have been no further sightings. However, the goat population is of historic interest and therefore protected, it has become evident that the presence of these feral goats is having a significant negative impact on the island ecosystem, due to overgrazing which causes soil damage, a lack of vegetation renewal, ecosystem degradation and biodiversity loss. From a chorological perspective, it is notable that Montecristo, as well as Gorgona and Capraia (Carta et al. 2018), exhibit a floristic affinity with the Cyrno-Sardinian territories. The islands of the Tuscan Archipelago exhibit a prevalence of species with a broad distribution, either Mediterranean-tetidic or with a broader distribution, holarctic, yet still tetidic in their gravitation (Euro-Mediterranean or Euro-tetidic) (Arrigoni et al. 2003), Montecristo does not differ in this general feature from the others. It is worth noting that Montecristo shares the prevalence of southern holarctic species with Elba and Gorgona, indicating a lower prevalence of the Mediterranean component compared to the continental one (Carta et al. 2018). However, there is a lower presence of the total holarctic component in Montecristo compared to Elba. This can be explained by the lesser isolation of Elba and the greater impact of European flora migrations during glacial periods (Carta et al. 2018). Additionally, Montecristo's lower altimetric development reduces the possibility of maintaining a meso-thermophile or mesophile flora. The

percentage of Italian endemic species in the Archipelago is not high when compared with the other Mediterranean islands, but it is nevertheless higher in Montecristo than in all the other neighbouring islands considering their area (Foggi et al. 2015). Conversely, biological invasions, in conjunction with socio-cultural changes, represent a significant contributing factor to the decline in endemism (Foggi et al. 2015) and constitute a substantial threat to biodiversity, particularly in island ecosystems (Médail 2013). Isolated ecosystems are more susceptible to increased invasion rates (Hulme et al. 2007; Lazzaro et al. 2014). However, Montecristo could represent a notable exception due to its strict conservation regime and the absence of significant tourism and land exploitation over the past four decades. Nevertheless, alien species were the only chorological type to demonstrate a notable increase over time. This suggests that even comprehensive protection and limited and controlled tourist exploitation are insufficient to render a small, isolated island immune to the pressures of anthropogenic disturbance. These pressures, together with socio-cultural changes in land use and climate change, are the main factors driving plant invasions (Hobbs, 2000), which, together with the detrimental effects of goats on the island, are leading to a degraded state of the island's vegetation.

Our research was based on a revision of available herbaria and bibliographic materials. However, some taxa or systematic groups would benefit from further investigation. Further morphological and cariological investigations would be required to provide stronger evidence for the presence of *Sedum dasypyllosum* L. subsp. *glanduliferum* (Guss.) Nyman (see Suppl. material 1), as previously indicated by Giuliani et al. (2014). Another taxon that requires further attention is *Plantago weldenii* Rchb., which is currently reported for the island of Montecristo. However, its taxonomic identity should be investigated more thoroughly, given the complexity of the group (Höpke et al. 2019; Lazzaro et al. 2020). Additionally, based on observations made by Vincenzo Gonnelli (pers. comm.), it appears that some of *Quercus ilex* samples collected from Montecristo individuals may display identification elements consistent with *Q. ilex* subsp. *rotundifolia* (Lam.) T.Morais., a commonly occurring subspecies in the Iberian Peninsula (under the name *Q. ilex* subsp. *ballota* (Desf.) Samp. in Castroviejo et al. 1990; see also Ferrer-Galego and Saez 2019 for nomenclatural issues on this taxon).

Conclusion

This study allowed the creation of an updated inventory of Montecristo Island, an important biodiversity hotspot for the Tuscan Archipelago and the Mediterranean in general. This inventory highlights the need for appropriate conservation measures in this region. Since the establishment of the integral reserve managed by CUFAA in 1971 and the following inclusion in the National Park of the Tuscan Archipelago in 1991, a considerable number of conservation activities have been conducted, both in situ and ex-situ, in addition to comprehensive studies designed to enhance comprehension of the archipelago's floristic richness and evaluate prospective conservation strategies. This revised account of the vascular, spontaneous, and cultivated flora of Montecristo Island serves as a significant reference for the development of knowledge regarding the island and the promotion of its protection.

Acknowledgements

We wish to thank the Tuscan Archipelago National Park and the Comando Unità Forestale, Ambientale e Agroalimentare (CUFAA) of the Arma dei Carabinieri for their support. The authors also acknowledge the support of NBFC to the University of Florence, funded by the Italian Ministry of University and Research, PNRR, Missione 4 Componente 2, “Dalla ricerca all’impresa”, Investimento 1.4, Project CN00000033. The authors would like to acknowledge the support of the Società Botanica Italiana. We also wish to thank Giorgio Marsiaj and Luciana Andriolo for their courtesy and helpfulness.

References

Arcangeli G (1894) Compendio della flora italiana. Seconda edizione. E. Loescher ed., Torino-Roma.

Arrhenius O (1921) Species and Area. *Journal of Ecology* 9: 95–99. <https://doi.org/10.2307/2255763>

Arrigoni PV (1976) Rapporti floristici tra l’Arcipelago Toscano e le terre vicine. *Biogeographia – The Journal of Integrative Biogeography* 5(1): 55–65. <https://doi.org/10.21426/B65110064>

Arrigoni PV (2006–2015) Flora dell’Isola di Sardegna. Vols. 1–6. Carlo Delfino ed., Sassari.

Arrigoni PV, Baldini RM, Foggi B (2003) Analysis of the floristic diversity of the Tuscan Archipelago for conservation purposes. *Bocconeia* 16(1): 245–259.

Baroni E (1897–1908) Supplemento generale al “Prodromo della Flora toscana di T. Caruel”. Società Botanica Italiana, Firenze. 638 pagg.

Bartolucci F, Peruzzi L, Galasso G, Alessandrini A, Ardenghi NMG, Bacchetta G, Banfi E, Barberis G, Bernardo L, Bouvet, Bovio M, Calvia G, Castello M, Cecchi L, Del Guacchio E, Domina G, Fascati S, Gallo L, Gottschlich G, Guarino R, Gubellini L, Hofmann N, Iberite M, Jiménez-Mejías P, Longo D, Marchetti D, Martini F, Masina RR, Medagli P, Peccenini S, Prosser F, Roma-Marzio F, Rosati L, Santangelo A, Scoppola A, Selvaggi A, Selvi F, Soldano A, Stinca A, Wagensommer RP, Wilhalm T, Conti F (2024) A second update to the checklist of the vascular flora native to Italy. *Plant Biosystems* 158(2): 219–296. <https://doi.org/10.1080/11263504.2024.2320126>

Bartolucci F, Domina G, Ballelli S, Conti F, Fortini P, Del Guacchio E, Di Iorio E, Galasso G, Gubellini L, Hofmann N, Laface VLA, Lonati M, Mazzacuva G, Nota G, Pesaresi S, Pinzani L, Prosser F, Quaranta L, Selvi F, Tiburtini M, Tiburtini R, Wilhalm T, Lastrucci L (2024b) Notulae to the Italian native vascular flora: 17. *Italian Botanist* 17: 13–21. <https://doi.org/10.3897/italianbotanist.17.126693>

Béguinot A (1901) Notizie botaniche su alcune erborizzazioni invernali attraverso le isole dell’arcipelago toscano. *Bullettino della Società Botanica Italiana* 1901: 44–56.

Béguinot A (1909) In: Fiori A, Béguinot A, Schedae ad Floram Italicam exsiccatam. Series II. Centuriae XI–XII. *Nuovo Giornale Botanico Italiano*, Nuova Serie 16(4): 443–495.

Béguinot A (1910) Schedae ad Floram Italicam exsiccatam. Series II. Centuriae XI–XII (Continuatio). Nuovo Giornale Botanico Italiano, Nuova Serie 17(1): 62–120.

Bertoloni A (1833–1854) Flora italica. 10 Voll. Masi, Bologna.

Briquet J (1910) Prodrome de la flore corse. Vol. I, Georg, Genève, Bâle, Lyon.

Carta A, Forbicioni L, Frangini G, Pierini B, Peruzzi L (2018) An updated inventory of the vascular flora of Elba island (Tuscan Archipelago, Italy). Italian Botanist 6: 1–22. <https://doi.org/10.3897/italianbotanist.6.26568>

Caruel T (1860) Prodromo della Flora Toscana. Ed. Le Monnier.

Caruel T (1863) Sopra due Crocifere italiane. Atti della Società Italiana di Scienze Naturali 5: 00–00 [Milano].

Caruel T (1864) Florula di Montecristo. Atti della Società Italiana di Scienze Naturali 6: 74–109 [Milano].

Caruel T (1868) Miscellanee botaniche presentate alla terza riunione straordinaria della Società Italiana di scienze naturali di Vicenza. Atti della Società Italiana di Scienze Naturali 11: 543–47 [Milano].

Caruel T (1871) Statistica botanica della Toscana. Firenze, Pellas.

Caruel T (1872) Della distribuzione geografica delle Sassifraghe, secondo un recente lavoro del dott. Engler. Ibidem, 251–254, Pisa.

Caruel T (1884) De la variabilità dans les plantes. Di pagine 30. Archives italiennes de Biologie. Tome V, fase. Ili; Turin, 1884.

Caruel T (1884–1881) Filippo Parlato. Flora Italiana, continuata da T. Caruel. Voll. 6–10. Le Monnier e Stab. Tip. Fiorentino.

Caruel T (1888) Sui generi delle Apiacee. Nuovo Giornale Botanico Italiano 10: 314–317.

Caruel T (1881) Osservazioni sulla vegetazione delle piante. Bullettino della Società toscana di orticoltura, anno VI, 97–98, Firenze.

Castroviejo S (1990) Flora iberica. Vol. 2. Platanaceae-Plumbaginaceae (partim).

Chiarucci A, Fattorini S, Foggi B, Landi S, Lazzaro L, Podani J, Simberloff D (2017) Plant recording across two centuries reveals dramatic changes in species diversity of a Mediterranean archipelago. Scientific Reports 7(1): 5415. <https://doi.org/10.1038/s41598-017-05114-5>

Crudele G, Landi M, Zoccola A (2005) La popolazione di *Quercus ilex* L. nella riserva naturale biogenetica isola di Montecristo: osservazioni, considerazioni e interventi di conservazione. Quaderno di Studi e Notizie di Storia Naturale della Romagna 21: 59–89.

D'Antraccoli M, Roma-Marzio F, Carta A, Landi S, Bedini G, Chiarucci A, Peruzzi L (2019) Drivers of floristic richness in the Mediterranean: a case study from Tuscany. Biodiversity and Conservation 28(6): 1411–1429. <https://doi.org/10.1007/s10531-019-01730-x>

D'Antraccoli M, Peruzzi L, Conti F, Galasso G, Roma-Marzio F, Bartolucci F (2024) Floristic richness in a Mediterranean hotspot: a journey across Italy. Plants 13(1): 12. <https://doi.org/10.3390/plants13010012>

Drake DR, Mulder CP, Towns DR, Daugherty CH (2002) The biology of insularity: an introduction. Journal of Biogeography 29(5–6): 563–569. <https://doi.org/10.1046/j.1365-2699.2002.00706.x>

Fabbri F (1963) Per una flora dell'isola di Montecristo. Le piante vascolari raccolte da A. Chiarugi nel maggio del 1957. Giornale Botanico Italiano 70: 629–633. <https://doi.org/10.1080/11263506309434946>

Fabbri F (1966) Per una più equilibrata protezione naturalistica dell'Isola di Montecristo. Natura e montagna 6(4): 126–135.

Ferrer-Galego PP, Saez L (2019) Type designation of the oaks *Quercus ballota* and *Q. rotundifolia* (Fagaceae). Nordic Journal of Botany 37(6): e02387. <https://doi.org/10.1111/njb.02387>

Ferretti G, Lazzaro L, Giuliani C, Foggi B (2013) Secondo contributo alla conoscenza della flora esotica dell'Arcipelago Toscano, Italia. Natural History Sciences 154(2): 115–130. <https://doi.org/10.4081/nhs.2013.115>

Filibeck G, Baliva M, Calcagnile L, Chiarucci A, D'Elia M, Quarta G, Quilghini G, Piovesan G (2023) Rediscovering Montecristo's treasure: The island's holm oaks reveal exceptional longevity. Ecology 104(7): e4064. <https://doi.org/10.1002/ecy.4064>

Filipello S, Sartori F (1980) La vegetazione dell'Isola di Montecristo (Arcipelago Toscano). Atti Istituto Botanico Laboratorio Crittogamia dell'Università di Pavia, Serie 6(14): 113–202.

Fiori A (1923–1929) Nuova Flora Analitica d'Italia. Edagricole, Bologna.

Fiori A, Paoletti G (1896–1909) Flora Analitica d'Italia. Tipografia del Seminario, Padova.

Foggi B, Viciani D, Baldini RM, Carta A, Guidi T (2015) Conservation assessment of the endemic plants of the Tuscan Archipelago, Italy. Oryx 49(1): 118–126. <https://doi.org/10.1017/S0030605313000288>

Galasso G, Conti F, Peruzzi L, Alessandrini A, Ardenghi NMG, Bacchetta G, Banfi E, Barberis G, Bernardo L, Bouvet D, Bovio M, Castello M, Cecchi L, Del Guacchio E, Domina G, Fassetti S, Gallo L, Guarino R, Gubellini L, Guiggi A, Hofmann N, Iberite M, Jiménez-Mejías P, Longo D, Marchetti D, Martini F, Masin RR, Medagli P, Musarella CM, Peccenini S, Podda L, Prosser F, Roma-Marzio F, Rosati L, Santangelo A, Scoppola A, Selvaggi A, Selvi F, Soldano A, Stinca A, Wagensommer RP, Wilhalm T, Bartolucci F (2024) A second update to the checklist of the vascular flora alien to Italy. Plant Biosystems 158(2): 297–340. <https://doi.org/10.1080/11263504.2024.2320129>

Galasso G, Domina G, Bacchetta G, Barberis D, Bartolucci F, Cancellieri L, Ceschin S, Ciaramella D, Croce A, Cuena-Lombraña A, Del Guacchio E, Di Lernia D, Fois M, Fontana D, Franzoni J, Giacò A, Laface VLA, Lallai A, Lonati M, Lupoletti J, Maccioni A, Mascia F, Mei G, Morabito A, Musarella C.M, Pelella E, Pica A, Pinzani L, Podda L, Stinca A, Varricchione M, Lastrucci L (2024b) Notulae to the Italian alien vascular flora: 17. Italian Botanist 17: 43–53. <https://doi.org/10.3897/italianbotanist.17.126768>

Giuli G (1833) L'indicatore Sanese. Anno 2°. Siena.

Giuliani C, Ferretti G, Foggi B, Viciani D, Mariotti M (2014) Indagini biosistematische sul genere *Sedum* in Toscana: *Sedum hirsutum* nell'isola di Montecristo? In: Peruzzi L, Domina G (Eds) Riunione Scientifica del Gruppo per la Floristica, Sistemática ed Evoluzione (27–28) Società Botanica Italiana, Gruppo per la Floristica.

Gonnelli V, Gottschlich G, Zoccola A (2019) *Hieracium racemosum* subsp. *amideii* (Asteraceae), a new hawkweed taxon from Montecristo Island (Tuscan Archipelago, Italy). Phytotaxa 406(5): 294–300. <https://doi.org/10.111646/phytotaxa.406.5.5>

Höpke J, Mucina L, and Albach DC (2019) Phylogenetic and morphometric analysis of *Plantago* section *Coronopus* (Plantaginaceae). Taxon 68: 315–339. <https://doi.org/10.1002/tax.12035>

Hulme PE (2007) Biological invasions in Europe: drivers, pressures, states, impacts and responses. *Biodiversity under threat* 25: 56–80. <https://doi.org/10.1039/9781847557650-00056>

Innocenti F, Westerman DS, Rocchi S, Tonarini S (1997) The Montecristo monzogranite (Northern Tyrrhenian Sea, Italy): a collisional pluton in an extensional setting. *Geological Journal* 32: 131–151. [https://doi.org/10.1002/\(SICI\)1099-1034\(199706\)32:2%3C131::AID-GJ735%3E3.0.CO;2-F](https://doi.org/10.1002/(SICI)1099-1034(199706)32:2%3C131::AID-GJ735%3E3.0.CO;2-F)

Kier G, Mutke J, Dinerstein E, Ricketts TH, Küper W, Kreft H, Barthlott W (2005) Global patterns of plant diversity and floristic knowledge. *Journal of Biogeography* 32(7): 1107–1116. <https://doi.org/10.1111/j.1365-2699.2005.01272.x>

Landi M, Zoccola A, Crudele G, Del Prete C (2008) Indagine sulla popolazione e caratterizzazione fitosociologica della vegetazione a *Juniperus phoenicea* L. subsp. *turbinata* (Guss.) Nyman dell'Isola di Montecristo (Arcipelago Toscano). *Atti della Società Toscana di Scienze Naturali, Memorie, Serie B* 114: 115–123.

Lazzaro L, Ferretti G, Galasso G, Lastrucci L, Foggi B (2013) Contributo alla conoscenza della flora esotica dell'Arcipelago Toscano, Italia. *Natural History Sciences* 154(1): 3–24. <https://doi.org/10.4081/nhs.2013.3>

Lazzaro L, Ferretti G, Giuliani C, Foggi B (2014) A checklist of the alien flora of the Tuscan Archipelago (Italy) *Webbia* 69(1): 157–176. <https://doi.org/10.1080/00837792.2014.907981>

Lazzaro L, Mugnai M, Ferretti G, Lazzeri V, Braeuchler C, Foggi B (2020) Lectotypification of the names *Plantago weldenii* and *P. commutata* (Plantaginaceae). *Phytotaxa* 429(1): 80–84. <https://doi.org/10.11646/phytotaxa.429.1.7>

Mannocci M, Ferretti G, Mazzoncini V, Fiorini G, Foggi B, Lastrucci L, Lazzaro L, Viciani D (2016) Two new *Saxifraga* species (Saxifragaceae) endemic to Tuscan Archipelago (central-northern Mediterranean, Italy). *Phytotaxa* 284(2): 108–113. <https://doi.org/10.11646/phytotaxa.284.2.2>

Médail F (2013) The unique nature of Mediterranean island floras and the future of plant conservation. In: Cardona Pons E, Estaún Clarisó I, Comas Casademont M, Fraga i Arguimbau P (Eds) *Islands and plants: preservation and understanding of flora on Mediterranean islands*. 2nd Botanical Conference in Menorca. *Recerca* 20: 325–350.

Médail F, Quézel P (1997) Hot-spots analysis for conservation of plant biodiversity in the Mediterranean Basin. *Annals of the Missouri Botanical Garden* 84(1): 112–127. <https://doi.org/10.2307/2399957>

Mittempergher M (1954) L'isola di Montecristo. *Atti Società Toscana Scienze Naturali* 61: 167–218.

Paoli P (1975) Aspetti fitogeografici dell'isola di Montecristo. *Biogeographia – The Journal of Integrative Biogeography* 5(1): 27–54. <https://doi.org/10.21426/B65110103>

Paoli P, Ciuffi Cellai G (1976) Schede per una Flora Palinologica Italiana. Contributo n. 2: Raccolte dell'Isola di Montecristo. *Archivio Di Botanica e Biogeografia Italiano* 52: 3–8.

Paoli P, Romagnoli G (1976) La flora vascolare dell'isola di Montecristo (Arcipelago Toscano). *Webbia* 30: 303–456. <https://doi.org/10.1080/00837792.1976.10670055>

Parlatore F (1848–1875) *Flora Italiana* Voll. 1–5. Ed. Le Monnier, Firenze.

Peruzzi L (2018) Floristic inventories and collaborative approaches: a new era for checklists and floras? *Plant Biosystems* 152(2): 177–178. <https://doi.org/10.1080/11263504.2017.1419997>

Peruzzi L, Viciani D, Bedini G [Eds] (2011) Contributi per una flora vascolare di Toscana. III (143–180). Atti della Società Toscana di Scienze Naturali, Memorie, Serie B 118: 39–46.

Peruzzi L, Viciani D, Bedini G [Eds] (2012) Contributi per una flora vascolare di Toscana. IV (181–246). Atti della Società Toscana di Scienze Naturali, Memorie, Serie B 119: 23–32.

Peruzzi L, Conti F, Bartolucci F (2014a) An inventory of vascular plants endemic to Italy. *Phytotaxa* 168(1): 1–75. <https://doi.org/10.11646/phytotaxa.196.1.1>

Peruzzi L, Viciani D, Bedini G (2014b) Contributi per una flora vascolare di Toscana. V (247–319). Atti della Società Toscana di Scienze Naturali, Memorie, Serie B 120: 35–44.

Peruzzi L, Viciani D, Bedini G (2014c) Contributi per una flora vascolare di Toscana. VI (320–356). Atti della Società Toscana di Scienze Naturali, Memorie, Serie B 121: 29–35.

Peruzzi L, Viciani D, Angiolini C, Astuti G, Avanzi A, Baldanzi C, Benesperi R, Bonari G, Bonini I, D'Antraccoli M, Castellani B, Dell'Olmo L, Di Nuzzo L, Domina G, Ercolini P, Ferretti G, Fontana D, Gestri G, Gottschlich G, Grazzini A, Lastrucci L, Lazzaro L, Malfanti F, Marsiaj G, Piazzini S, Pierini B, Roma-Marzio F, Sani A, Selvi F, Vicenti C, Bedini G (2015) Contributi per una flora vascolare di Toscana. VII (357–439). Atti della Società Toscana di Scienze Naturali, Memorie, Serie B 122: 61–72.

Peruzzi L, Viciani D, Agostini N, Angiolini C, Ardenghi N M G, Astuti G, Bardaro MR, Bertacchi A, Bonari G, Boni S, Chytrý M, Ciampolini F, D'Antraccoli M, Domina G, Ferretti G, Guiggi A, Iamónico D, Laghi P, Lastrucci L, Lazzaro L, Lazzeri V, Liguori P, Manocchi M, Marsiaj G, Novák P, Nucci A, Pierini B, Roma-Marzio F, Romiti B, Sani A, Zoccola A, Zukal D, Bedini G (2016) Contributi per una flora vascolare di Toscana. VIII (440–506). Atti della Società Toscana di Scienze Naturali, Memorie, Serie B 123: 71–82.

Peruzzi L, Viciani D, Angiolini C, Astuti G, Banfi E, Benocci A, Bonari G, Bruni G, Caramente P, Caré M, Carta A, Castagnini P, Cheli A, Ciampolini F, D'Antraccoli M, Ferretti G, Ferruzzi S, Fiaschi T, Foggi B, Fontana D, Galasso G, Gallo L, Galvani D, Gestri G, Grazzini A, Lastrucci L, Lazzaro L, Loppi S, Manganelli G, Mugnai M, Piazzini S, Pierini B, Roma-Marzio F, Sani A, Selvi F, Soldano A, Stinca A, Bedini G (2017) Contributi per una flora vascolare di Toscana. IX (507–605). Atti della Società Toscana di Scienze Naturali, Memorie, Serie B 124: 73–86.

Peruzzi L, Viciani D, Angiolini C, Astuti G, Banfi E, Bardaro MR, Bianchetto E, Bonari G, Cannucci S, Cantini D, Castagnini P, D'Antraccoli M, Esposito A, Ferretti G, Fiaschi T, Foggi B, Franceschi G, Galasso G, Gottschlich G, Lastrucci L, Lazzaro L, Maneli F, Marchetti D, Marsiaj G, Mugnai M, Roma-Marzio F, Ruocco M, Salvai G, Stinca A, Bedini G (2018) Contributi per una flora vascolare di Toscana. X (606–663). Atti della Società Toscana di Scienze Naturali, Memorie, Serie B 125: 67–76.

Peruzzi L, Viciani, D, Angiolini C, Astuti G, Banfi E, Brandani S, Bonari G, Cambria S, Cannucci S, Castagnini P, D'Antraccoli M, De Giorgi P, Di Natale S, Ferretti G, Fiaschi T, Gonnelli V, Gottschlich G, Lastrucci L, Lazzaro L, Misuri A, Mugnai M, Pierini B, Pinzani L, Roma-Marzio F, Sani A, Selvi F, Spinelli A, Bedini G (2019) Contributi per una flora vascolare di Toscana. XI (664–738) Atti della Società Toscana di Scienze Naturali, Memorie, Serie B 126: 35–46.

Peruzzi L, Viciani D, Angiolini C, Ardenghi NMG, Benocci A, Bonari G, Cannucci S, Cecchi L, De Simone L, Fanfarillo E, Ferrarini J, Fiaschi T, Fontana D, Franzoni J, Gestri G, Giacò A,

Iamonico D, Lazzaro L, Lazzeri V, Misuri A, Mugnai M, Pierini B, Quilghini G, Romolini R, Selvi F, Siccardi E, Soldano A, Bedini G (2023) Contributi per una flora vascolare di Toscana. XV (959–1054) Atti della Società Toscana di Scienze Naturali, Memorie, Serie B 130: 11–23.

Pignatti S (1982) Flora d'Italia. Voll. 3. Edagricole, Bologna.

Pignatti S, Guarino R, La Rosa M (2019) Flora d'Italia. 2nd ed. Vol. I–IV. Bologna: Edagricole.

POWO (2024) Plants of the World Online. Facilitated by the Royal Botanic Gardens, Kew. <https://powo.science.kew.org/> [Retrieved 18 October 2024]

Pyšek P, Richardson DM, Rejmánek M, Webster GL, Williamso M, Kirschner J (2004) Alien plants in checklists and floras: towards better communication between taxonomists and ecologists. *Taxon* 53(1): 131–143. <https://doi.org/10.2307/4135498>

Regione Toscana, CIST [Centro Interuniversitario per le Scienze del Territorio] (2017) Progetto HaSCITu (Habitat in the site of a community interest in Tuscany) – Regione Toscana (in corso).

Rilke S (1999) Species diversity and polymorphism in *Salsola* sect. *Salsola sensu lato* (Chenopodiaceae). *Systematics and Geography of Plants* 68(1–2): 305–314. <https://doi.org/10.2307/3668609>

Sartori F (1978) Aggiunte alla Flora Vascolare dell'Isola di Montecristo (Arcipelago Toscano) Atti Istituto Botanico Laboratorio Crittogramia dell'Università di Pavia 6(13): 171–180.

Sommier S (1890) Nuove stazioni di piante in Toscana. *Società Botanica Italiana* 22: 376.

Sommier S (1891) Addenda ad *Floram Etruriae*. *Società Botanica Italiana* 23: 241.

Sommier S (1894) *Centaurea cineraria*, *C. cinerea*, *C. busambarensis* e *Jacea cinerea* laciniata flore purpureo. *Nuovo Giornale Botanico Italiano*, Nuova Serie 1(1): 81.

Sommier S (1895) *Glyceria festucaeformis* var. *violacea*. *Nuovo Giornale Botanico Italiano* Nuova Serie 1: 49.

Sommier S (1897) Due Gagee nuove per la Toscana ed alcune osservazioni sulle Gagee della Sardegna. *Società Botanica Italiana* 1897: 246.

Sommier S (1898) Resoconto di una gita botanica nell' Arcipelago toscano *Nuovo Giornale Botanico Italiano*, Nuova Serie 5: 136.

Sommier S (1899) Di alcune piante nuove o poco note per la Toscana. *Società Botanica Italiana* 1899: 130.

Sommier S (1901) Rendiconto morale della Società Botanica Italiana durante il biennio 1899–1900. *Società Botanica Italiana* 1900: 193.

Sommier S (1902) La flora dell'Arcipelago Toscano. *Nuovo Giornale Botanico Italiano*, Nuova Serie 9: 319–354.

Sommier S (1903) La flora dell'Arcipelago Toscano. Nota II. *Nuovo Giornale Botanico Italiano*, Nuova Serie 10(2): 133–200.

Sommier S (1905) Forme nane di *Diplotaxis muralis* DC. e di *Erodium cicutarium* L' Hérit. *Nuovo Giornale Botanico Italiano*, Nuova Serie 12: 457.

Sommier S (1910) *Calycotome villosa* (Vahl) Link var. *inermis* Somm. *Società Botanica Italiana* 1910: 88.

Sommier S (1915) Alcune piante interessanti della Toscana. *Società Botanica Italiana* 1915: 21.

Sposimo P, Baccetti N, Pelliccioni E R, Guberti V, Giannini F, Capizzi D (2014) Piano per l'eradicazione del ratto nero *Rattus rattus* nell'Isola di Montecristo (Arcipelago Toscano).

Thiers BM (2020) [and onwards] Index Herbariorum: A Global Directory of Public Herbaria and Associated Staff. New York Botanical Garden's Virtual Herbarium. <http://sweetgum.nybg.org/science/ih/> [Accessed 16 December 2024]

Valavanidis A, Vlachogianni T (2011) Ecosystems and biodiversity hotspots in the Mediterranean basin threats and conservation efforts. *Science advances on Environment, Toxicology & Ecotoxicology* 10: 1–24.

Supplementary material 1

Updated inventory of the vascular flora of the Island of Montecristo

Authors: Eugenia Siccardi, Giulio Ferretti, Bruno Foggi, Michele Mugnai, Maria Rosaria Pasqualina Bardaro, Marco Landi, Giovanni Quilghini, Antonio Zoccola, Lorenzo Lazzaro

Data type: docx

Explanation note: Inventory of spontaneous vascular flora.

Copyright notice: This dataset is made available under the Open Database License (<http://opendatacommons.org/licenses/odbl/1.0/>). The Open Database License (ODbL) is a license agreement intended to allow users to freely share, modify, and use this Dataset while maintaining this same freedom for others, provided that the original source and author(s) are credited.

Link: <https://doi.org/10.3897/italianbotanist.19.139675.suppl1>

Supplementary material 2

List of cultivated exotics taxa found on Montecristo Island

Authors: Eugenia Siccardi, Giulio Ferretti, Bruno Foggi, Michele Mugnai, Maria Rosaria Pasqualina Bardaro, Marco Landi, Giovanni Quilghini, Antonio Zoccola, Lorenzo Lazzaro

Data type: docx

Explanation note: List of cultivated exotics taxa.

Copyright notice: This dataset is made available under the Open Database License (<http://opendatacommons.org/licenses/odbl/1.0/>). The Open Database License (ODbL) is a license agreement intended to allow users to freely share, modify, and use this Dataset while maintaining this same freedom for others, provided that the original source and author(s) are credited.

Link: <https://doi.org/10.3897/italianbotanist.19.139675.suppl2>