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Blood samples (N = 238) were collected from both juvenile and adult individuals during seven breeding seasons
between 2007 and 2014, excluding 2013. Sampling was performed in the pristine environment of the Strofades
island complex, Greece, where the largest colony of Scopoli's shearwaters is located in the Eastern Mediterranean
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1. Introduction

Seabirds reflect shifts in environmental conditions in a marine envi-
ronment, including those occurring due to pollution pressures (Durant
et al., 2009; Sponza et al., 2010; Frederiksen and Haug, 2016). Heavily in-
dustrialized/urbanized marine environments such as the Mediterranean
Sea basin are impacted by chronic anthropogenic inputs of metals
(Naimo, 1995; Ansari et al., 2004; Tsangaris et al., 2013). Nonetheless,
metals are naturally occurring elements in aquatic systems, some of
which (e.g., lead (Pb), cadmium (Cd)) are toxic to organisms (non-es-
sential), while others (e.g. copper (Cu) and zinc (Zn)) are essential for
life at trace concentrations, but again toxic above specific thresholds.
Metal toxicity is influenced by several interacting factors in seawater en-
vironments such as pH, temperature and salinity (Burbidge et al., 1994).
Nonetheless, scarce information is available concerning these synergistic
or antagonistic effects of metals, but the synergistic toxicity can be accel-
erated significantly by the physiology of the marine organism involved
(Stewart et al., 1996). The interactions between seabirds and their re-
spective aquatic marine environment occur from the lowest to the
upper trophic levels (Schreiber and Burger, 2002) of the ecosystem(s).
Consequently, seabirds are reliable species that can be used as indicators
for the ecological health of specific marine settings (Piatt et al., 2007).

Trace metals are known to accumulate in seabirds, although their bi-
ological function and effect mechanism remains largely obscure
(Thompson et al., 1990). Certain seabird taxa, such as the procellariform
species, including albatrosses, shearwaters and petrels, have been used
up to now for the environmental monitoring of trace metals in the ma-
rine environment (Eisler, 1988, Von Schirnding and Fuggle, 1996;
Pérez-Lopez et al., 2006; Piatt et al., 2007; de Villiers et al., 2010;
Cardoso et al., 2014). These seabird species can be exposed to chemicals
through a multitude of pathways, including particle inhalation, diges-
tion of specific pelagic fish species, and even by direct deposition on
their feathers (which occurs mainly at their breeding grounds and/or
wintering areas) (Elliott et al., 1992; Stewart et al., 1996, 1997;
Monteiro et al., 1996; Thompson and Dowding, 1999; Gonzalez-Solis
et al., 2007; Bond and Lavers, 2010, Summers et al., 2014).

Trace metal concentrations are often reported for adult seabird indi-
viduals, but not often for chicks or fledglings (Walsh, 1990). Nonethe-
less, juveniles have been proposed as particularly useful indicators for
pollution, as they demonstrate increased accumulation of metals during
their time period spent in the breeding colonies (i.e. hatching to fledg-
ing) and the foraging areas (Walsh, 1990; Le Corre et al., 2012; Soanes
et al., 2016; Karris et al., 2018a). Metal pollution has been previously
studied in the Mediterranean basin region, mainly by monitoring sea-
bird and waterfowl eggs (Fossi et al., 1984; Lambertini and Leonzio,
1986; Focardi et al., 1988; Leonzio et al., 1989; Ayas et al., 2008;
Pereira et al., 2019). In addition, a limited amount of references exists
on trace metal concentrations (from eggs and feathers) of colonial sea-
birds that breed in the Aegean colonies of Greece (Ristow et al., 1992;
Goutner et al,, 2000, 2001, 2013; Escoruela et al., 2018). Moreover, rel-
evant reports concerning trace metal concentrations in seabird blood
samples originating from Hellenic colonies are lacking. In this context,
this study focuses on investigating the occurrence and profiles of select
trace metal concentrations, including those of lead (Pb), cadmium (Cd),
cobalt (Co), chromium (Cr), copper (Cu), manganese (Mn), nickel (Ni)
and zinc (Zn), over seven breeding seasons (spanning from 2007 to
2014), in blood samples from Scopoli's shearwater (Calonectris
diomedea) in the pristine environment of the Strofades island complex
(located in the Eastern Ionian Sea basin).

2. Materials and methods
2.1. Study area and species

The study area was the Strofades island complex (37°15’ N, 21°00’
E), located at the Eastern lonian Sea; comprising of two small

uninhabited flat islets (22 m above sea level), namely, Arpyia in the
north and Stamfani in the south, and numerous rock formulations be-
tween those (Fig. 1). The remote insular area is located 32 nm south
of Zakynthos Island and 26 nm west of the Peloponnese (mainland
Greece), covering an area of 4 km? that constitutes part of the National
Marine Park of Zakynthos. Updated estimates raise the Hellenic popula-
tion of Scopoli's shearwater to 8400-10,000 pairs, while the study area
hosts 50-60% of those, and currently constitutes the largest colony of
the species in the Eastern Mediterranean basin (Karris et al., 2017).
Fieldwork was carried out on the largest island (i.e. Stamfani 2.6 km?)
involving three study coastal breeding sectors, namely, the west,
south and east coast of the islet, where different types of nesting shear-
water habitats occur in terms of topography and vegetation,
e.g., burrows under fallen boulders and bushes excavated by the birds,
nests in crevices under rocks and natural deep cavities of coastal cliffs.

The Mediterranean Scopoli's shearwater is a pelagic, long-lived, mo-
nogamous, migratory seabird, with particularly high degree of site te-
nacity (Cramp and Simmons, 1983; Anselme and Durand, 2012). The
species diet consists of pelagic and mesopelagic fishes, squids, crusta-
ceans and occasionally zooplankton (Monteiro et al., 1996; Alonso
et al,, 2012; Neves et al.,, 2012; Afan et al.,, 2014), but also trawl fishery
discards, which are mainly benthopelagic prey species and can be char-
acterized as actually unavailable due to the foraging ecology of Scopoli's
Shearwater (Karris et al., 2018b). Small prey is normally found in shal-
low waters and near reefs and is usually taken by shearwaters near
the sea surface (Zino, 1971; Mougin et al., 1977; Granadeiro et al.,
1998; Belda and Sanchez, 2001). The major threats of Scopoli's shear-
water in its breeding grounds are: i) predation of eggs and chicks by in-
vasive mammals (Pascal et al., 2008; Ruffino et al., 2009); ii) accidental
entrapment (by-catch) in fishery gears (Belda and Sanchez, 2001;
Ramos et al., 2003; Catry et al., 2006; Garcia-Barcelona et al., 2010;
Karris et al., 2013a; Baez et al., 2014); iii) human disturbance such as
light pollution (Rodriguez et al., 2015); iv) marine pollution (Ristow
et al., 1992; Roscales et al., 2010, 2011); and v) plastic debris (Codina-
Garcia et al,, 2013).

2.2. Field sampling and sample handling

Fieldwork was carried out during the end of the fledging period (late
September-mid of October) of the years 2007-2012 and 2014 as previ-
ously performed by Karris et al. (2018a). Overall, 238 individuals were
extracted from their nesting burrows (i.e. 56 breeders and 182 fledg-
lings, while 112 of them were males and 114 females according to gen-
der determination) with either the aid of a projecting hook-like
improvised tool or were captured on the ground by hand. From every
captured individual, the weight was initially measured by using an elec-
tronic balance, and thereafter blood sampling followed. A handler ex-
tended the wing to expose the branchial vein and a sampler collected
an amount of 0.2-0.5 ml of blood with a heparinized 28-gauge syringe.
Blood was transferred and kept in Eppendorf vials (1.5 ml) with ethyl
alcohol as preservative. After blood collection, the shearwaters were
placed back to their nest burrows, while blood samples were kept in
boxes with ice and transported directly at —8 °C to the laboratory for
storage at —20 °C until further sample processing.

2.3. Sample extraction

Sample digestion was performed using a Teflon coated block diges-
tion system (by Savillex, Minnesota, U.S.). The total amount of blood
samples was transferred into polypropylene digestion tubes and the
tubes were then placed on the block digestion system (set at 40 °C for
45 min) to evaporate ethyl alcohol (and the dry weight of the blood
samples was noted). Thereafter, maintaining the samples at 60 °C for
60 min (on the digestion system), 1 ml of concentrated nitric acid
(HNO3) p.a. was added to each sample. After the sample digestion pro-
cess was completed, the tubes were diluted up to a total volume of 5 ml
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Fig. 1. Location of the study area in the South lonian Sea, Greece.

by adding 0.2% nitric acid solution. Certified reference material following a polymerase chain reaction-based methodology combined
(Seronorm™ Trace Elements Whole Blood, Sero, Billingstad, Norway) with morphometric variables (Karris et al,, 2013b; Appendix A).

(duplicates; n = 2) and corresponding field blanks (n = 2) were ana- Principal Component Analysis (PCA) was ultimately performed for
lyzed for every sample batch (40 samples). Method blanks (n = 2) the investigation of all variables (elements and body weight). Indepen-
were also prepared for every batch and were treated in a similar manner dent variables, including gender, age class and year of sampling were

as actual samples. The recoveries obtained for each metal based on for- used to illustrate the results of the analysis on PCA bi-plots. Data han-
tified samples and the certified reference material were: Cd: dling was performed with the SPSS statistical package (IBM SPSS statis-
93.5-97.2%, Co: 90.1-94.7%, Cr: 98.4-102.5%, Cu: 95.2-101.0%, Mn: tics 20 software) for descriptive and correlation statistics and the R
94.3-98.0%, Ni: 91.2-95.4%, Pb: 90.8-93.1% and Zn: 102.4-105.1%. (version 3.5.1) open source software package (R Development Core

Team, 2015) for PCA.
2.4. Instrumental analysis
3. Results and discussion
Analysis of Cd, Co, Cr, Cu, Mn, Ni and Pb was performed by graphite

furnace atomic absorption spectroscopy, while the analysis of Zn was Metal concentrations in Scopoli's shearwater blood samples col-
performed by flame atomic adsorption spectroscopy. 1 ml of each ex- lected during 2007-2014 in the Strofades island group are presented
tract was transferred for graphite furnace atomic absorption spectros- in Table 1. Metal concentrations in circulating blood reflect recent expo-
copy (AS-800 THGA Furnace, Perkin Elmer. Massachusetts, U.S.) sure to the source of pollution through diet or accumulation (Furness,
analysis. Calibration curves were prepared by using a commercial stan- 1993; Kahle and Becker, 1999). The rank order of median concentra-
dard solution mixture of metals, specific for atomic absorption measure- tions of target metals in blood samples was: Zn (22.9) > Cu (3.41) > Cr

ments (Merck CertiPUR Inorganic Mixes, Massachusetts, U.S.). The (1.11) > Ni (0.61) > Mn (0.29) > Pb (0.24) > Co (0.18) > Cd (0.010 pg/
Analytik Jena nov AA 350 (Jena City, Germany ) flame atomic adsorption g dw). The results are demonstrated by gender, age group and year of
spectroscopy instrument was used for the analysis of Zn (1 ml of each sampling in Table S1; Supplementary data. All relevant statistical tests
diluted sample), using the internal standards kit (Analytik Jena Com- demonstrated that the assumption of normality among elemental con-
pany; Jena City, Germany) at the beginning and at the end of the analyt- centrations was not obtained (P < 0.05), and therefore relevant data
ical procedure. Solvent blanks were measured after every batch of 10 were analyzed by using non-parametric tests. Spearman's correlation
samples to monitor for carry-over effects. The limits of detection test revealed negative but no significant relationship between body
(LODs) were calculated for each target analyte as three times the signal mass and the concentrations of each metal, except for Cd (rs = —0.32;
from the baseline noise (S/N ratio; LOD = 3 S/N); Cd 0.38 10—, Co 8.28 P < 0.01) (Table S2; Supplementary data). Furthermore, significant
1073,Cr6.55 1073, Cu8.28 1073, Mn 2.00 1073, Ni 690 1073,Pb 134 inter-annual differences were detected in the concentration of all the
1073, and Zn 95.9 103 pg/g, while the limits of quantification (LOQs) metals examined (Kruskal-Wallis H test; P < 0.001; Fig. 2), except for
were estimated as three times the LODs. The uncertainty (precision; Ni (Kruskal-Wallis H = 3.09; P = 0.79) and Cd among female individ-

RSD%) at the LOQ of each element was <20%. uals (multiple comparison post-hoc Kruskal-Wallis H = 10.3; P =
0.11). Regarding age and gender, statistically significant differences

2.5. Statistical treatment were detected for certain metals (Cd, Cr, Cu, Ni, Zn) among the two
age groups (Table S3; Supplementary data). Significantly higher con-

All data were checked for normality by a set of two tests (Kolmogo- centrations of Cd, Zn and Ni were found in adults compared to those

rov-Smirnov and Shapiro-Wilk) and pairwise correlation coefficients found in juveniles (Kruskal-Wallis H tests P < 0.05), and these differ-
were applied to obtain relevant correlation matrix and identify possible ences for Cd were consistent in both genders (Table S3; Supplementary
associations between selected variables. One-way analysis of variance data). These results were in accordance with relevant studies in other
was used to determine significant interannual differences of metal con- seabird species, e.g., Black-headed gull (Larus ridibundus) juveniles
centrations and establish profile differences between age classes (juve- had statistically significant lower Cd accumulation in muscle, liver,
niles and adults) and genders. Gender determination was achieved by lung and femur compared to adults (Ortowski et al., 2007). On the



190 M.-D. Voulgaris et al. / Science of the Total Environment 691 (2019) 187-194

Table 1

Concentrations of metals in 238 Scopoli's shearwater blood samples collected during
2007-2014 in the Strofades island complex, expressed as pig/g of dry weight. Non-detects
are not included in the calculations of descriptive statistics.

N (detected Detection Mean Median Min. Max. Range

out of 238)  frequency (%) (25%-75%)
cd 125 52.5 0.040 0.010 <LOD 0.50 0.010-0.030
Co 104 43.7 0.40 0.18 <LOD 248 0.090-0.45
Cr 228 95.8 2.90 111 <LOD 78.0 0.31-2.87
Cu 235 98.7 9.11 3.41 0.040 211 1.70-9.53
Mn 217 91.2 0.73 029 0010 304 0.11-0.57
Ni 165 69.3 5.47 0.61 0.030 203 0.21-0.62
Pb 91 38.2 0.81 024 <LOD 26.5 0.080-0.69
Zn 150 63.0 279 229 028 132  8.94-39.5

contrary, significantly higher concentrations of Cr and Cu were found in
juveniles compared to adults (Kruskal-Wallis H tests P < 0.05), and
these differences were consistent for both genders (Table S3; Supple-
mentary data). In many relevant toxicological studies, blood samples
were used to examine exposures to metals in seabirds (Wilson et al.,
2004; Summers et al., 2014; Lerma et al., 2016; Fenstad et al., 2017).
Blood concentrations of elements in birds are commonly reflected to
current dietary preferences (Evers et al, 2008; Wayland and
Scheuhammer, 2011). In avifauna, metals such as Pb and Cd are
absorbed into the bloodstream and rapidly accumulate into the bones
and growing feathers as well as to soft tissues, including liver and kid-
neys (Franson and Pain, 2011; Wayland and Scheuhammer, 2011).
Overall, the results from all years collectively were lower compared to
relevant blood concentrations of metals in other similar seabird species
(Table 2). Among the seven breeding seasons, the metal concentrations

in 2008 were the highest. Thresholds in contour feathers for metal ad-
verse effects for seabirds have been previously defined, e.g., 4 pg/g for
Pb and 2 pg/g for Cd (Burger and Gochfeld, 2000a, 2000b, 2002), but di-
rect comparison with blood concentrations found in this study was
avoided.

The strong negative association of body weight with Cd that was
established, was found in accordance with previous studies on shearwa-
ters (Ishii et al., 2017). It is worthwhile to mention that in our study
fledglings represented the majority (80%) of the sampled individuals.
Thus, this significant negative correlation between Cd and weight can
be attributed to the fact that breeders mainly feed chicks with squids
during the early rearing phase (Field Observation by Karris), which con-
tain high Cd concentrations due to bioaccumulation capacity of Cd in the
digestive gland of cephalopods (Bustamante et al., 1998). It is also note-
worthy to report that as the fledging period progresses, and chicks in-
crease their weight, breeders shift their meals to fish, and
consequently, chicks demonstrate lower concentration of Cd in blood
while it is gradually circulated to the growing feathers and tissues of
the adult. Cd concentrations in Scopoli's shearwaters (0.010-0.020 pg/
g) were comparable to other seabird populations, e.g., located in Marion
Island, South Africa (range: 0.040-0.30 pg/g) (Table 2). Apart from the
various well-established factors that may influence metal concentra-
tions in marine feeding areas, such as the existence of wastewater efflu-
ent pressures (Topcuoglu et al., 2002), another less-established
parameter, is the season of foraging activity by the parent birds. It is no-
table that food provision to nestlings begins from mid-July, just after egg
hatching, and lasts up to a few days before fledgling (late September-
early October). This coincides with the time period where increased
Cd concentrations are found in ichthyofauna in the Eastern Mediterra-
nean, which spans from September to November (Galitsopoulou,

Cd Co Cr
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Table 2
Comparative table of different seabird species, metal concentrations and type of sampled tissue.
Species Tissue Cd Pb Cu Zn Co Ni Mn Cr Area Reference
Calonectris Kidney 112 + 21.1 + 110 + 323 Azores, Portugal ~ Stewart et al. (1997)
diomedea (ug/g) 8.74 7.99
Calonectris Kidney 9.3 +£10.0 125 + 114 £ 243 Pico Is., Portugal ~ Stewart et al. (1996)
diomedea (ng/g) 3.54
Calonectris Liver (ug/g) 3.03 £ 18.8 + 198 + 5.29 Azores, Portugal ~ Stewart et al. (1997)
diomedea 1.72 5.29
Calonectris Liver (ng/g)  2.03 + 132 + 176 + 48.6 Pico Is., Portugal ~ Stewart et al. (1996)
diomedea 2.78 7.38
Phoebetria fusca Blood 0.19 + 0.03 4+ Marion Is., S. Summers et al.
(ng/g) 0.15 0.02 Africa (2014)
Phoebetria Blood 0.04 + 0.05 &+ Marion Is., S. Summers et al.
palpebrata (ug/g) 0.02 0.01 Africa (2014)
Diomedea exulans Blood 0.30 + 0.14 + Marion Is., S. Summers et al.
(ng/g) 0.12 0.15 Africa (2014)
Oceanodroma Liver (pg/g) 20.7 + 155 £ 12.6 158 &+ Gull Is., Can. Atl. Elliott et al. (1992)
leucorhoa 1.49 2.27 Coast
Oceanodroma Liver (ug/g) 20.7 + 173 +40.3 16.0 + Kent Is., Can. Atl.  Elliott et al. (1992)
leucorhoa 2.81 1.00 Coast
Oceanodroma Liver (pg/g) 17.8 + 138 + 14.6 173 + Ile Is., Can. Atl. Elliott et al. (1992)
leucorhoa 2.03 1.37 Coast
Fratercula arctica  Liver (ug/g) 153 + 99.5 +15.9 8.87 + Gull Is., Can. Atl. Elliott et al. (1992)
0.69 1.55 Coast
Fratercula arctica  Liver (ug/g) 233 + 91.1 + 8.94 113 + Ile Is., Can. Atl. Elliott et al., (1992)
3.13 13 Coast
Puffinus carneipes ~ Feathers 288 + 515 + 18,382 + 92,244 + 257 + 2649 + 2189 + W. Australia Bond and Lavers
(ng/g) 816 367 3053 33,945 102 3593 1336 (2010)
Puffinus nativitalis ~ Feathers 950 + 2380 + 2050 + 2350 +  Northern Pacific ~ Burger and Gochfeld
(ng/g) 429 531 485 485 Ocean (2000b)
Gygis alba Feathers 216 + 1380 + 410 + 1300 +  Northern Pacific ~ Burger and Gochfeld
(ng/g) 36.0 693 53.2 102 Ocean (2000b)
Sula sula Feathers 513 + 975 + 1460 + 2530 £  Northern Pacific  Burger and Gochfeld
(ng/g) 5,0.58 97.9 314 576 Ocean (2000Db)
Phoebastria Feathers 364 + 799 + 1720 + 6570 £  Northern Pacific ~ Burger and Gochfeld
immutabilis (ng/g) 103 5.8 255 2280 Ocean (2000Db)
Phoebastria Feathers 152 + 973 + 1780 + 1420 +  Northern Pacific ~ Burger and Gochfeld
nigripes (ng/g) 25.8 125 195 160 Ocean (2000b)
Fregata minor Feathers 204 + 1500 + 590 + 1120 £  Northern Pacific ~ Burger and Gochfeld
(ng/g) 127 143 79.7 221 Ocean (2000b)
Phaethon Feathers 55.2 + 684 + 678 + 1670 &  Northern Pacific ~ Burger and Gochfeld
rubricauda (ng/g) 7.97 115 152 92.2 Ocean (2000b)
Onychoprion Feathers 734 + 519 + 300 + 502 + Northern Pacific ~ Burger and Gochfeld
fuscatus (ng/g) 6.62 47.9 53.0 315 Ocean (2000b)
Anous stolidus Feathers 274 + 289 + 424 + 5860 +  Northern Pacific ~ Burger and Gochfeld
(ng/g) 207 63.9 148 1420 Ocean (2000b)
Pterodroma Feathers 129 + 1350 + 561 + 1620 +  Northern Pacific ~ Burger and Gochfeld
hypoleuca (ng/g) 28.7 291 196 69.5 Ocean (2000b)
Onychoprion Feathers 95.0 + 942 + 1120 + 820 + Northern Pacific ~ Burger and Gochfeld
lunatus (ng/g) 10.0 312 340 95.0 Ocean (2000b)

2014). The effect of seasonal foraging activity in the accumulation of Cd
is attributed, mainly on physiologic differentiations of fish catches,
throughout the year (Ozden, 2013). Moreover, gender differentiation
of Cd concentrations was demonstrated and was attributed to diet dif-
ferences (Ishii et al,, 2017). In some cases, male and female individuals
in both sexually monomorphic and size dimorphic seabirds use differ-
ent foraging areas, and this may be partially explained by clear differ-
ences in the reproductive roles during specific stages of the breeding
cycle (Hedd et al., 2014; Matsumoto et al., 2017). Shearwater breeders
employ a dual foraging strategy to serve the nutrition of their chicks
and meet their own energy demands (Magalhdes et al., 2008; Cecere
etal., 2013). Possibly these different foraging areas can be characterized
by different pollution loads. Therefore, foraging behavior of both gen-
ders must be verified with further tracking studies on Strofades
breeders as well as elemental analysis on their diet items captured
within their main foraging areas throughout the whole breeding period.

Regarding Pb, there is a substantial body of literature describing the
effects of Pb contamination on seabird behavior and physiology (Burger
and Gochfeld, 2000a, 2000b, 2002). In the present study, Pb blood con-
centrations ranged between 0.070 and 0.53 ng/g and were comparable
to relevant results from other seabird species colonies, e.g., located in

the Marion Island (0.034 ng/g-0.14 pg/g) (Table 2). Overall, Pb concen-
trations were higher than those of Cd; an observation consistent with
previous results on related seabirds from different colonies (Table 2).

The absence of significant associations of the remaining trace metals
with body mass can reflect either low metabolic rates (Colwell, 2010) or
consumption of prey species of lower biomass as it is observed during
trawler discarding (Karris et al., 2018b). However, it is suggested that
when trace metal concentrations are not correlated with the body
mass, it reflects of low pollution pressures in the corresponding marine
habitats (Kim et al., 1996). Concentrations of Co, Cr, Cu, Mn, Zn and Ni
were lower when compared to other biological media from related sea-
bird species (Table 2). Zn concentrations were ranging from 0.28 to 132
lg/g dw. Zn is important during the fledging stage (Migula and
Augustyniak, 2000) since it has been shown experimentally with poul-
try that higher demands of Zn are needed for feather growth, and poten-
tial deficiency in Zn can cause a frayed feather condition (Sunde, 1972).
Consequently, juveniles herein showed significant lower blood concen-
trations of Zn compared to adults (16.9 vs 39.2 pg/g dw) potentially due
to the higher demands of feather growth.

The PCA analysis (Fig. 3, Figs. S1 and S2; Supplementary data) was
applied to identify the patterns and associations within the specific
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data set. It depicted a positive relationship of Cd and Zn, which is consis-
tent with previous reports (Ishii et al., 2017), while it demonstrated the
negative association between Cd and weight. Moreover, these metals
are expected to interact with metallothionein (MT), a low molecular
weight cysteine-rich protein involved in the homeostasis of essential
metals. The synthesis of MT can be induced by several metals, such as
Cd while Zn is essential for the synthesis of MT. When Cd is up taken,
Zn is replaced by Cd in MT to achieve detoxification. It is reported that
Cd and MT concentrations are positively associated in many seabirds
(Elliott et al., 1992; Stewart et al., 1996) since high accumulation of Cd
induces the synthesis of MT. Furthermore, from the PCA bi-plots it is ev-
ident that Pb and Cu demonstrated higher contributions to many sam-
ples that were collected during 2018. Higher Zn and Pb positive
contributions were depicted for adult male and juvenile female individ-
uals, respectively.

4. Conclusions

This work herein demonstrated the concentration profiles of Cd, Pb,
Cr, Cu, Co, Ni, Mn and Zn between 2007 and 2014, excluding 2013 in the
blood of Scopoli's shearwater species. This study highlighted the use of
this species as a potential marker of current metal pollution. The Eastern
Mediterranean basin and more specifically the pristine Ionian Sea area
face new challenges due to increasing activities from the forthcoming
developments of the energy industry in the area, including the con-
struction of offshore wind farms (Bagiorgas et al., 2015; Soukissian
et al, 2017) and hydrocarbons exploration (Karakitsios, 2013;
Tsirambides, 2015); currently, Hellenic authorities are launching bid-
ding processes for hydrocarbon exploratory and exploitation rights in

Dim2 (14.6%)

I
o

the Ionian Sea marine area. Offshore windfarm developments are asso-
ciated with numerous environmental concerns, including toxic metal
pollution from increased vessel traffic and the shuffling of seabed sedi-
ments during developing and decommissioning procedures (Bailey
et al., 2014; Topham and McMillan, 2017). In addition, oil-gas explora-
tion and exploitation activities increase even more the pollution pres-
sures towards the lonian Sea marine environment (Cordes et al., 2016).

Further work on Scopoli's Shearwater species should focus on their
diet. Assessing the chick’s diet, including the analysis of regurgitations,
could provide insights on the dynamics and accumulation of metals in
the study population. This, in turn, would allow a greater insight into
the baseline metal concentrations in a relatively non-polluted environ-
ment such as the remote Strofades island complex, Greece.

Animal ethics permit

Research expeditions of the current study had specific permit every
year (breeding season) from the Management Agency of the National
Marin Park of Zakynthos (NMPZ), which as public service belongs to
the Greek Ministry of Environment and Energy (e.g. ref. no. 579/
NMPZ; 180468/657/Ministry of Environment and Energy). Additionally,
the Natural History Museum of Crete (scientific institution code
GR002), partner of the current research study, has a CITES (the Conven-
tion on International Trade in Endangered Species of Wild Fauna and
Flora) sampling permit for wildlife (ref. no. 096860/2199/23-8-2005).
All the relevant activities-samplings were carried out ensuring the max-
imum safety of Scopoli's Shearwater as well as the least possible distur-
bance to adults and fledglings of the target species and its breeding
habitat.

% 2010
< 2011
7 2012

= 2014

Weight

4 8
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Fig. 3. Result of principal component analysis. xx’ axis shows component 1 and yy’ axis shows component 2. The blue arrows indicate the distribution of the tested metals. Samples per

breeding season are also depicted with different colors.
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Novelty statement

This is the first report for the biomonitoring of select trace metals in
blood samples from the largest colony of Scopoli's shearwaters, cover-
ing seven breeding seasons. The study provides baseline data for the lo-
nian shearwaters that are located in the pristine environment of the
Strofades Island complex, Greece, before the initiation of the forthcom-
ing local developments from the wind and oil energy industry.
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