

Two new Amphimallon Latreille, 1825 from the tiny islets of Milos archipelago, Cyclades, Greece (Coleoptera Scarabaeidae Melolonthinae)

Pietro Lo Cascio^{1*}, Leonidas-Romanos Davranoglou² & Nikolaos Manolas³

- ¹Associazione Nesos, Via Vittorio Emanuele 24, 98055 Lipari (Messina), Italy; e-mail: plocascio@nesos.org ²Oxford University Museum of Natural History, University of Oxford, OX1 3PW, Oxford, United Kingdom; e-mail: leonidas-romanos.davranoglou@oum.ox.ac.uk
- ³Department of Environment, Ionian University, M. Minotou-Giannopoulou str. Panagoula, 29100 Zakynthos, Greece; e-mail: nikosmanolas2002@gmail.com

ABSTRACT

During recent faunal investigations promoted by the NGO "Initiative PIM", two populations of *Amphimallon* Latreille, 1825 (Coleoptera Scarabaeidae Melolonthinae) were found on the islets of Glaronisia and Paximadi near Milos island in the Cyclades (Greece). Both populations were found to belong to two new species which are described in the present paper: *A. claudiae* n. sp. from Glaronisia and *A. pim* n. sp. from Paximadi. The new taxa seem to be closely related to *A. arnaudi* Montreuil et Uliana, 2022, known from the nearby Sifnos. On these microinsular ecosystems, beetles are largely preyed upon by gulls and robber flies.

KEY WORDS

Scarab beetles; Amphimallon; new species; Aegean islands; microinsular environments.

Received 28.07.2025; accepted 18.08.2025; published online 30.08.2025

INTRODUCTION

The genus Amphimallon Latreille, 1825 (Coleoptera Scarabaeidae Melolonthinae) includes a large number of species and subspecies distributed in southern Europe, Middle East and North Africa, with some representatives extending in Central Asia and the Far East (Bezděk, 2016; Montreuil & Keith, 2022). According to Montreuil (2008), this genus may have originated in the Iberian Peninsula, while its diversification within the current range has been shaped by the palaeogeographic events in the Mediterranean area over the last 25 Ma, especially during the Plesitocene glacial or interglacial cycles. Nineteen taxa among species and subspecies have so far been recorded from Greece, including some recently described (see Montreuil, 1999; Keith,

2010; Uliana & Montreuil, 2022; Montreuil & Uliana, 2022).

In May 2025, the NGO "PIM Initiative" organized a scientific trip to the Milos archipelago, in the Western Cyclades (Greece), with the aim of exploring and assessing the biodiversity of the islets of Antimilos, Mega Akradi, Mikro Akradi, Glaronisia, Agios Georgios, Agios Eustathios, Manolonisi, and Paximadi.

Two of them (Glaronisia and Paximadi, see Figs. 1–5) are inhabited by populations of *Amphimallon* which, upon further analysis, were found to belong to two new species (Figs. 6–12). We also provide observations on the biology and ecology of these populations, which appear to play a significant role in the trophic webs of these microinsular ecosystems.

^{*}corresponding author

MATERIAL AND METHODS

Study area

Field research was carried out on the tiny islets of the Milos archipelago, in the western Cyclades (Greece): Glaronisia and Paximadi (Fig. 1).

Glaronisia (area: 24,900 m²; max elevation: 30 m a.s.l.) lies 1,020 m off the N coast of the Milos island (Fig. 2) and is composed by basaltic columnar lavas belonging to the northern Milos Pleistocene formations (2.62 ± 0.04 Ma: see Fytikas et al., 1986; Zhou et al., 2021). Its surface is mostly occupied by bare rocky outcrops and hosts a patchy shrubland dominated by *Caroxylon aegaeum* (Rech. f.) Akhani & Roalson and *Atriplex halimus* L., intermingled with herb-rich communities with several geophytes (S. Pasta, personal communication); structure and composition of the local vegetation are strongly influenced by the occurrence of a large colony of Yellow-legged Gull *Larus michahellis* Naumann (Fig. 3).

Paximadi (area: 55,300 m²; max elevation: 20 m a.s.l.) is localized 1,350 m off the SW coast of

Milos (Fig. 4). Although no detailed information on its geology are available in literature, it likely represents a fragment of the basal pyroclastic series of Middle-Upper Pliocene widely occurring on this slope of the main island (according to Zhou et al., 2020). The islet has a flat plateau densely covered by a low shrubland dominated by *Medicago arborea* L., *Pistacia lentiscus* L. and *Convolvulus oleifolius* Desr. (S. Pasta, personal communication), and hosts a large colony of seagulls, together with some nesting pairs of Eleonora's falcon *Falco eleonorae* Gènè (Fig. 5).

Samples

The studied specimens were collected during daylight hours by using an entomological net or directly on the ground, where a large number of elytral and body remains (often included in bird pellets) were also found. The collected material was pinned or mounted on glue boards and examined by using an Optika SZM-2 stereo-binocular microscope equipped with a micrometer eyepiece. Photos of the specimens were taken with a Canon R7

Figure 1. Localization of the studied islets: Glaronisia and Paximadi near Milos island in the Cyclades (Greece).

Figure 2. The islet of Glaronisia.near Milos island (Cyclades, Greece).

Figure 3. Habitat of Amphimallon claudiae n. sp. (Glaronisia islet.near Milos island, Cyclades, Greece).

Figure 4. The islet of Paximadi near Milos island (Cyclades, Greece).

Figure 5. Habitat of Amphimallon pim n. sp. (Paximadi islet.near Milos island, Cyclades, Greece).

equipped with a macro lens RF 100 mm f/2.8; images were subsequently processed with Helicon Focus 6 software.

ABBREVIATIONS AND ACRONYMS. Ex, specimen/s; MU, Marco Uliana collection (Venezia, Italy); PLC, Pietro Lo Cascio collection (Lipari, Italy); ZMUA, Zoological Museum of the Kapodistrian University of Athens (Greece).

RESULTS

Systematics

Ordo COLEOPTERA Linnaeus, 1758 Familia SCARABAEIDAE Latreille, 1802 Subfamilia MELOLONTHINAE Samouelle, 1819 Tribus RHIZOTROGINI Burmeister, 1855 Genus *Amphimallon* Latreille, 1825

Amphimallon claudiae n. sp. https://www.zoobank.org/227FD94D-B029-4D88-B06A-DD6F97FF5F4E

DIAGNOSIS. A species of *Amphimallon* entirely yellow-brown except for the head, the pronotum and the scutellum brown-black, pronotum with scarce pubescence and sparse punctures spaced 3-5 times their diameter, slightly denser on the sides and at the base of medial line, antennae with 9 antennomeres, antennal club with straight segments, clypeus straight or just slightly sinuate in the fore margin, frons strongly keeled, protibiae tridentate.

TYPE MATERIAL. Holotype male. GREECE • Glaronisia Islet (Milos Island, Cyclades), 36.455953° N, 24.291158° E; 12 May 2025; P. Lo Cascio legit; PLC. Paratypes males. GREECE • 2 ex; Glaronisia Islet (Milos Island, Cyclades), 36.455953° N, 24.291158° E; 12 May 2025; P. Lo Cascio legit; (1 PLC, 1 MU).

DESCRIPTION. Length of holotype (Fig. 6) 17.0 mm from the margin of clypeus to the pygidium (length of paratypes 15.8 and 15.0 mm, respectively).

Head and scutellum brown-black, as well as the pronotum except for the anterolateral margins slightly lighter; clypeus, elytra, pygidium, antennae and legs yellow-brown, protibiae and clypeus with darker margins. Clypeus glabrous, sparsely punctu-

ated, strongly depressed, with straight or just slightly sinuate fore margin, sides rounded from the base including the anterior angles. Frons with a strong keel, very evident in lateral view, punctuated as the clypeus. Vertex deeply and irregularly punctuated, with a rough appearance, and sparse short setae. Antennae composed by 9 antennomeres; antennal club with straight segments, club 1.4 times as long as antennomeres 2–6.

Pronotum slightly convex, transverse; anterior angles rounded and obtuse, the posterior ones more clearly marked; sides subparallel, converging in the distal part, just slightly flaring outwards in the proximal part where the pronotum reaches its maximum width; posterior margin widely protruding towards the scutellum in the medial part; pronotal surface (Fig. 11) covered by sparse punctures spaced 3–5 times their diameter, more densely punctuated on the sides and at the base of the medial line; integument between punctures with a fairly matt appearance; a row of subspiniform, strong yellow-browny setae on the edge of lateral and anterior margins, on the latter partially overlapping a very short, dense and lighter setation facing forward towards the head; only scattered and very short setae on the pronotal surface.

Scutellum elliptical, shiny and smooth on the edges, coarsely and deeply punctuated in the middle, partially covered by long recumbent setae in the upper part (Fig. 17). Elytra with well-defined humeral calli, striae only barely visible, interstriae 1, 3 and 5 slightly raised, surface rugose with sparse foveolate punctuation mixed to dense transverse wrinkles; dorsal vestiture with few long, erect or backward-inclined setae near the humeral callus, and very short setae scattered on the punctures and along the elytral suture; a row of subspiniform, strong yellow-brown setae (slighltly longer than the pronotal ones) along the epipleural margin, becoming sparser and shorter on the elytral apex. Surface of pygidium weakly puncticulate, smooth on the margin, sparsely covered by small setae as long as the diameter of the punctures.

Protibiae tridentate in the external margin, apical teeth clearly prominent, the basal one just barely recognizable; apical spur extends just beyond the base of protarsomere 1. Fifth metatarsomere 3.5 times as long as wide. Aedeagus as in Fig. 13.

Female unknown.

DISTRIBUTION AND BIOLOGY. *Amphimallon claudiae* n. sp. is currently known only from the type locality: Glaronisia Islet (Milos Island, Cyclades, Greece).

All the studied specimens were found already dead on the ground, most of them with clear signs of predation; many exoskeleton and/or elytral remains were also included in gull pellets (Fig. 18). The adults probably emerge from their shelters in the late afternoon (as happens in the islet of Paximadi), because no activity was observed during our morning visit.

ETYMOLOGY. The new species is named after our colleague and friend Claudia Corti, noun in the genitive case, a valuable herpetologist and island biologist, who took part in the scientific expedition to the islets of Milos, witnessed its discovery.

REMARKS. The new species seems to be closely related to *A. arnaudi* Montreuil et Uliana, 2022, described from the island of Sifnos and known from a single specimen; thanks to the courtesy of the colleagues O. Montreuil and M. Uliana it was possible to compare our material with high-resolution photos of the holotype. *Amphimallon claudiae* n. sp. differs mainly in the lighter colour of the integuments, the occurrence of a well-marked keel on the frons (Fig. 7), the fore margin of the clypeus not or only slightly sinuated in the middle, as well as in the shape, punctuation and vestiture of the pronotum, where a true furrow behind in the median line is lacking (Figs. 10, 11).

The differences between *A. claudiae* n. sp. and the new species described below are discussed in the relevant paragraph.

Amphimallon pim n. sp. https://www.zoobank.org/2DBEF400-EE99-4F9D-

A7B0-3BDC71C19F72

DIAGNOSIS. A species of *Amphimallon* that is entirely yellow pale-brown except for the head, the pronotum and the scutellum which are brownblack, pronotum with rather dense pubescence and sparse, shallow punctures spaced 4–8 times their diameter on the disc, less dense on the sides, antennae with 9 antennomeres, antennal club with straight segments, clypeus straight or just slightly sinuate in the fore margin, frons flat, protibiae tridentate.

TYPE MATERIAL. Holotype male. GREECE • Paximadi Islet (Milos Island, Cyclades), 36.375194° N, 24.190173° E; 16 May 2025; P. Lo Cascio legit; PLC. Paratypes males. GREECE • 4 ex; Paximadi Islet (Milos Island, Cyclades), 36.375194° N, 24.190173° E; 16 May 2025; P. Lo Cascio legit; PLC · 1 ex; Paximadi Islet (Milos Island, Cyclades); 16 May 2025; N. Manolas legit; ZMUA.

DESCRIPTION. Length of holotype (Fig. 8) 13.8 mm from the margin of clypeus to the pygidium (length of paratypes ranging from 13.0 to 15.1 mm). Head and scutellum brown-black, as well as the pronotum except on the sides where becomes slightly lighter; clypeus, elytra, pygidium, antennae and legs yellow pale-brown, protibiae and clypeus with darker margins.

Clypeus glabrous, deeply punctuated, strongly depressed; fore margin straight or just slightly sinuate; sides rounded from the base including the anterior angles. Frons flat, separated from the vertex by a barely visible wrinkled line; surface punctuated as in the clypeus. Vertex with coarse punctuation on the sides (above the eyes), less or not punctuated in the middle, partially covered by dense tufts of recumbent setae. Antennae composed by 9 antennomeres; antennal club with straight segments, club 1.3 times as long as antennomeres 2–6.

Pronotum convex, transverse, with anterior angles broadly rounded and not clearly visible from above, the posterior ones almost right; sides subparallel up to the basal third, where the pronotum reaches its maximum width, then regularly curved; posterior margin slightly protruding towards the scutellum in the medial part; pronotal surface (Fig. 12) sparsely punctuated, with shallow punctures spaced 4–8 times their diameter on the disc, even less closer on the sides; integument between punctures with a shiny and smooth appearance; a row of subspiniform, strong yellowish setae on the edge of lateral and anterior margins, on the latter partially overlapping a very short, dense and lighter setation facing forward towards the head; long recumbent or erect setae on the pronotal surface.

Scutellum elliptical, entirely shiny and smooth, with shallow and very sparse punctuation, partially covered by long recumbent setae in the upper part (Fig. 17). Elytra with well-defined humeral calli, striae only barely visible, interstriae 1, 3 and 5

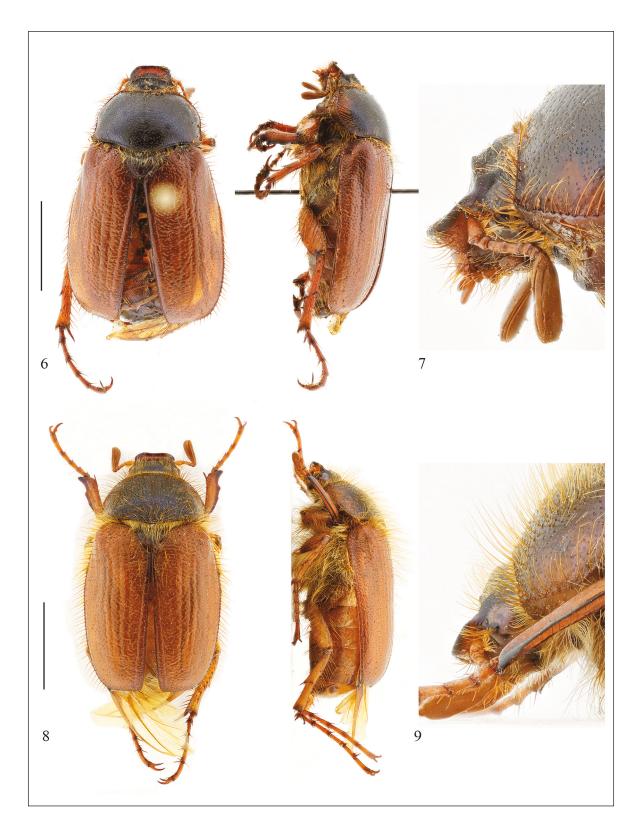


Figure 6. Habitus of holotype of *Amphimallon claudiae* n. sp. (dorsal and left lateral view; scale: 5 mm.). Figure 7. Head of of *A. claudiae* n. sp. from left lateral view (not to scale). Figure 8. Habitus of holotype of *A. pim* n. sp. (dorsal and left lateral view; scale: 5 mm.). Figure 9. Head of of *A. pim* n. sp. from left lateral view (not to scale).

slightly raised, surface rugose with sparse foveolate punctuation mixed to dense transverse wrinkles; dorsal vestiture with long, erect or recumbent setae on the humeral calli and on the middle of the elytron up to the basal third, and very short setae scattered on the punctures and along the elytral suture; a row of subspiniform, strong yellowish setae (slightly longer than the pronotal ones) along the epipleural margin, becoming sparser and shorter on the elytral apex.

Pygidium shiny and smooth at the edges, feebly puncticulate in the middle, with small setae 3–4 times as long as the diameter of punctures. Protibiae tridentate in the external margin, apical teeth clearly prominent, the basal one just barely recognizable; apical spur extends beyond the base of protarsomere 1. Fifth metatarsomere 3.3 times as long as wide. Aedeagus as in Fig. 14.

Female unknown.

DISTRIBUTION AND BIOLOGY. *A. pim* n. sp. has so far only been found on Paximadi Islet (Milos Island, Cyclades, Greece).

Specimens of *A. pim* n. sp. were observed in flight starting from 5 p.m. (about 2 hours before sunset), in moderately warm and windless weather. After their emergence from the ground or the litter, the flying adults were immediately preyed by robber flies (Diptera Asilidae) of the genus *Dasypogon* Meigen, 1803, which were often occurring in very high density on the islet.

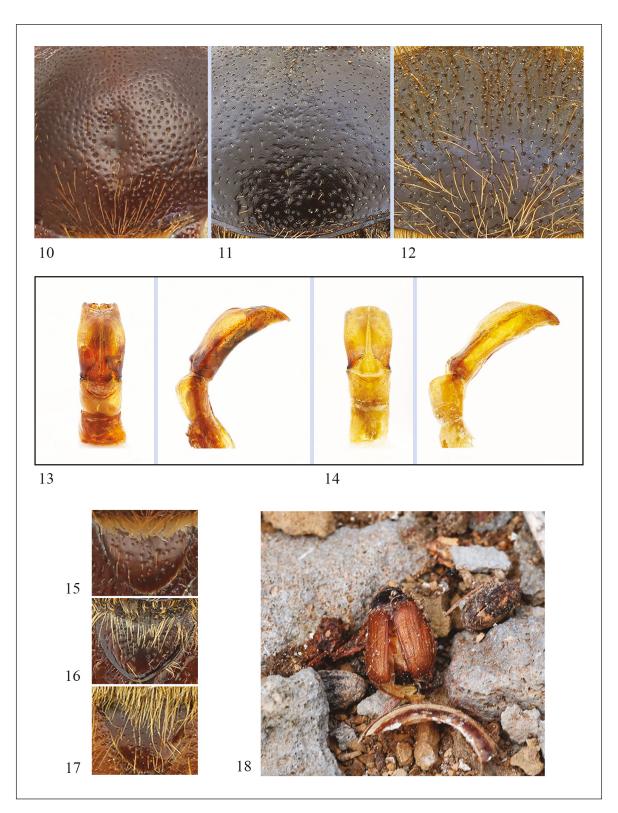
ETYMOLOGY. The new species is named after "PIM Initiative", the international NGO (www.initiative-pim.org) that promotes research on the biodiversity of the fragile microinsular ecosystems of the Mediterranean and the Macaronesia, as well as several important projects for their monitoring, management and conservation. Noun in apposition.

REMARKS. The new species has clear morphological affinities with *A. arnaudi* and *A. claudiae* n. sp.

Compared to the latter, however, the main differences are: elytra and legs more yellowish, and less darker appearance on the whole; frons not keeled (Fig. 9); dense pubescence on the pronotum; pronotal punctuation sparser and more superficial, uniform at the base of the medial line (whereas *A. claudiae* n. sp. has denser and irregular punctures) (Figs. 7, 9); pronotum with different shape; scutel-

lum smooth and shiny with only sparse and shallow punctures (Figs. 11, 12); smaller size (A. pim n. sp., N = 6: mean length 13.8 mm; A. claudiae n. sp., N = 3: mean length 15.9 mm); slight differences occur also in the shape of the parameri (Figs. 13, 14).

The smaller size and the differences in coloration, in the shape of the pronotum and in the punctuation of the latter and of the scutellum (Figs. 10–12, 15–17) allow to easily distinguish the new species from *A. arnaudi*.


DISCUSSION AND CONCLUSIONS

The discovery of *Amphimallon* populations living on tiny islets (with an area of less than 0.1 km²) is certainly not a frequent occurrence, as almost all known species of this genus inhabit continental areas or larger islands. Furthermore, no less surprising is the fact that these populations, despite occupying two islets only 20 km apart, both belong to morphologically distinct species that resulted to be new to science.

This finding confirms that the Cyclades, as well as the whole Aegean area, host a rich biodiversity and are characterized by a high rate of endemicity (see Fattorini et al., 2000; Sfenthourakis & Legakis, 2001; Triantis & Mylonas, 2009; Poulakakis et al., 2015; Sfenthourakis & Triantis, 2017; Sfenthourakis et al., 2018; Lo Cascio & Sparacio, 2023), but also suggests the need for further research to improve the knowledge on their faunal assemblages.

The genus *Amphimallon* was so far represented in the Cyclades by *A. arnaudi* and *A. maevae* Montreuil, 1999, respectively known from Sifnos and Naxos (Montreuil, 1999; Bezděk, 2016; Montreuil & Uliana, 2022).

No species have been recorded for Milos, which is however separated from the islets of Glaronisia and Paximada only by narrow sea channels. Although the present data indicate that *A. claudiae* n. sp. and *A. pim* n. sp. are respectively endemic to these islets, it is highly likely that further investigations will confirm the occurrence of one or even both on the main island. Besides, Glaronisia and Paximada are included in the isobath of –50 m and were thus connected to the latter during the Last Glacial Maximum.

Figures 10–12. Pronotal surface of *Amphimallon arnaudi* (Fig. 10), *A. claudiae* n. sp. (Fig. 11) and *A. pim* n. sp. (Fig. 12); not to scale. Figures 13, 14. Dorsal and lateral view of the aedeagus of *A. claudiae* n. sp. (Fig. 13) and *A. pim* n. sp. (Fig. 14). Figures 15–17. Scutellum of *A. arnaudi* (Fig. 15), *A. claudiae* n. sp. (Fig. 16) and *A. pim* n. sp. (Fig. 17), not to scale. Figure 18. Elytral remains of *A. claudiae* n. sp. in a gull nest at Glaronisia. Figs. 10 and 15 courtesy of O. Montreuil and M. Uliana.

On the other hand, Milos and its satellites lie in the central part of the Hellenic volcanic arc and are composed by volcanic formations; the oldest products are dated at 3,5 Ma, while the last eruptive activity occurred in the first and second centuries CE (Fytikas et al., 1986; Zhou et al., 2021). The rugged topography of Milos, as well as the strong volcanic events occurred in a recent past, may have played a role as a geographical barrier between different populations and originated allopatric speciation processes.

In this geographical context, small uninhabited islets are probably the most intact and conservative environments. At the same time, islets are extremely simplified ecosystems, where spatial limits and severe ecological constraints allow only the occurrence of poor plant communities and faunal assemblages.

On Glaronisia and Paximadi, adults of both species seem to play an important role in the local trophic webs: on the former, *A. claudiae* n. sp. is one of the most common prey for gulls; on the latter, day-active individuals of *A. pim* n. sp. support the occurrence of an extraordinarily large population of robber flies, whose high density (estimated around 0.2-0.5 ind./m²) would otherwise be difficult to explain.

However, adults of the genus *Amphimallon* usually have a short phenology (see Uliana & Montreuil, 2022), and it is therefore likely that this role is extremely limited in time.

Concerning the phylogenetic relationships of the new taxa, from a morphological point of view both seem to be closely related with each other as well as with A. arnaudi from the nearby island of Sifnos. Nevertheless, the latter has been referred by Montreuil & Uliana (2022) to the group "pini", that should be characterized among other features by a furrow behind the median line of the pronotum, the frons without keel or at least barely carinate, and the elytra with transverse wrinkles (Reitter, 1902; Baraud, 1967; 1992; Montreuil, 2000). These characters do not always correspond in the two new species: for instance, the frons keel is well marked in A. claudiae n. sp., but almost absent in A. pim n. sp.; the pronotum is not furrowed in both species, and just a feeble impression behind the median line occurs in A. claudiae n. sp. The group of species occurring in the Western Cyclades would perhaps require further study for its better definition.

ACKNOWLEDGEMENTS

We would to thank all the participants of the PIM mission to the Milos archipelago, namely the coordinators Eva Tankovic and Jeanne Chaumont, and the colleagues Apostolos Christopoulos, Claudia Corti, Melitini Damigou, Penelope Karagianni and Salvatore Pasta; the staff of the Natural Environment Climate & Change Agency (NECCA) who accompanied us to the islets; Marco Uliana (Natural History Museum of Venice, Italy), who kindly provided very useful suggestions and literature; Olivier Montreuil (National Museum of Natural History, France), for the permission to use his image of A. arnaudi; Wojciech Szczepański (Upper Silesian Museum of Byton, Poland) for the provisional identification at genus level of the Diptera Asilidae; and Carmelo Mustica (Associazione Nesos, Lipari, Italy), who took photos of the studied specimens.

REFERENCES

Baraud J., 1967. Les *Rhizotrogus* du "groupe pini" (Coleoptera: Melolonthidae: Melolonthinae). Description d'une nouvelle espèce d'Espagne. Bulletin de la Société Entomologique de France, 72: 39–44.

Baraud J., 1992. Coléoptéres Scarabaeoidea d'Europe. Faune de France 78. Fédération française des Sociétés de Science naturelles et Société Linnéenne, Paris-Lyon, 856 pp.

Bezděk A., 2016. Tribe Rhizotrogini Burmeister, 1855.
In: Löbl I. & Löbl D. (Eds.). Catalogue of Palaearctic Coleoptera. Vol. 3. Scarabaeoidea, Scirtoidea, Dascilloidea, Buprestoidea, Byrrhoidea. Revised and Updated Edition. E.J. Brill, Leiden-Boston, pp. 249–280.

Fattorini S., Leo P. & Salvati L., 2000. Levels of endemism in the Aegean tenebrionids (Coleoptera, Tenebrionidae). Biogeographia, 21: 429–440.

Fytikas M., Innocenti F., Kolios N., Manetti P., Mazzuoli R., Poli G., Rita F. & Villari L., 1986. Volcanology and petrology of volcanic products from the island of Milos and neighbouring islets. Journal of Volcanology and Geothermal Research, 28: 297–317.

Keith D., 2010. Description d'un nouvel *Amphimallon* de Grèce. L'Entomologiste, 66: 113–115.

Lo Cascio P. & Sparacio I., 2023. A brief introduction to the zoogeography of the Aegean Archipelago. In: Masseti M. (Ed.). Life on islands. 2. Zoological diversity of the Aegean Archipelago. Studies dedicated to Norma Chapmann. Danaus, Palermo, pp. 5–12.

- Montreuil O., 1999. Révision de deux espèces de Grèce du genre *Amphimallon* Berthold, 1827, et description d'une nouvelle espèce. Bulletin de la Société Entomologique de France, 104: 105–108.
- Montreuil O., 2000. Cladistic systematics of the genus *Amphimallon* (Coleoptera: Scarabaeidae: Melolonthinae). European Journal of Entomology, 97: 253–270.
- Montreuil O., 2008. Biogeographic hypothesis explaining the diversity of the genus *Amphimallon* Berthold, 1827, in the Mediterranean Basin (Coleoptera, Scarabaeidae, Melolonthinae, Rhizotrogini). Palaeogeography Palaeoclimatology Palaeoecology, 259: 436–452.
 - https://doi.org/10.1016/j.palaeo.2007.10.030.
- Montreuil O. & Keith D., 2022. Description et révision de deux nouveaux genres de Rhizotrogini d'Afrique du Nord (Coleoptera: Melolonthidae). Annales de la Société Entomologique de France, 58: 11–32. https://doi.org/10.1080/00379271.2022.2029562.
- Montreuil O. & Uliana M., 2022. Un nouvel *Amphimallon* Latreille (Coleoptera, Melolonthidae, Rhizotrogini) de l'île de Sifnos (Grèce). Faunitaxys, 10: 1–5.
- Poulakakis N., Kapli P., Lymberakis P., Trichas A., Vardinoyiannis K., Sfenthourakis S. & Mylonas M., 2015. A review of phylogeographic analyses of animal taxa from the Aegean and surrounding regions. Journal of Zoological Systematics and Evolutionary Research, 53: 18–32.
 - https://doi.org/10.1111/jzs.12071.

- Reitter E., 1902. Bestimmungs-Tabelle der Melolonthidae as der europäischen Fauna und den angrenzendern Ländern, enthalten die Gruppen der Pachydeminiu, Sericini und Melolonthini. Verhandlungen des naturforschenden Vereines in Brünn, 40: 94–303.
- Sfenthourakis S. & Legakis A., 2001. Hotspots of endemic terrestrial invertebrates in southern Greece. Biodiversity & Conservation, 10: 1387–1417.
- Sfenthourakis S. & Triantis K.A., 2017. The Aegean archipelago: a natural laboratory of evolution, ecology and civilisations. Journal of Biological Research, 24. https://doi.org/10.1186/s40709-017-0061-3.
- Sfenthourakis S., Pafilis S., Parmakelis P., Poulakakis N. & Triantis K.A. (Eds.), 2018. Biogeography and Biodiversity of the Aegean. In honour of Prof. Moysis Mylonas. Broken Hill, Nicosia, 299 pp.
- Triantis K.A. & Mylonas M., 2009. Greek islands, biology. In: Gillespie R. & Clague D. (Eds.). Encyclopedia of Islands. University of California Press, Berkeley, pp. 388–392.
- Uliana M. & Montreuil O., 2022. A new species of *Amphimallon* Latreille, 1825 (Coleoptera: Scarabaeidae: Melolonthinae) from continental Greece. Zootaxa, 5087: 372–382.
 - https://doi.org/10.11646/zootaxa.5087.2.7.
- Zhou X., Kuiper K., Wijbrans J., Boehm K. & Vroon P., 2021. Eruptive history and ⁴⁰Ar/³⁹Ar geochronology of the Milos volcanic field, Greece. Geochronology, 3: 273–297.
 - https://doi.org/10.5194/gchron-2020-30.