Rapid assessment of coastal areas as a tool in the decision-taking process for MPAs planning Field Study, Cabrera NP partner, MEDPAN project Interreg Illc

OBJECTIVE:

DEVELOP A METHODOLOGY OF RAPID EVALUATION OF MARINE COASTAL AREAS FROM AN ENVIRONMENTAL POINT OF VIEW TO HELP DECISSION MAKING PROCESSES OF MPA MANAGERS

ACTIVITIES:

1-SELECTION OF A MULTIDISCIPLINARY WORKING GROUP

2-IDENTIFICATION AND SELECTION OF A SET OF INDICATORS

3-SELECTION OF AN STUDY CASE AREA

4-TEST METHODS FOR INTEGRATION OF INDICATORS & DATA ANALYSIS

5-PRODUCE "HOW TO" MANUALS AND OTHER END USER PRODUCTS

1-SELECTION OF A MULTIDISCIPLINARY WORKING GROUP

SET UP A GROUP OF EXPERTS OF DIFFERENT TOPICS

- -MPA MANAGER (END USER POINT OF VIEW)
- -UNDERWATER SAMPLING
- -COASTAL BIOLOGY INDEXES
- -GIS PROCESSING
- -QUALITY INDICATORS BASED ON FISH POPULATIONS
- -QUALITY INDICATORS OF SEAGRASS
- -ENVIRONMENTAL SPECIES INDICATORS

EXTERNAL COLABORATORS FOR:

-ENVIRONMENTAL QUALITY INDEXES BASED ON COASTAL ALGAE -COMUNITIES
-GIS PROCESSING
-GENERAL ADVICE

2-IDENTIFICATION AND SELECTION OF A SET OF INDICATORS

INDICATORS REQUIREMENTS:

- 1- ALREADY TESTED AND PROVED VALID
- 2- WELL DOCUMENTED
- **3- CLEAR INTERPRETATION**
- 4- LOW COST
- 5- FAST SAMPLING
- 6- POSIBILITY OF SIMPLE PARAMETRIZATION

2-IDENTIFICATION AND SELECTION OF A SET OF INDICATORS

INDICATORS SELECTED

CLASS I:

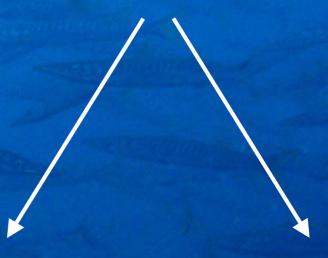
- •ALLOWS FOR A FIRST ZONATION OF THE AREA
- MAINLY DESK WORK
- **•BASED ON PREVIOUS STUDIES/INFORMATION ON THE AREA**

CLASS II:

- **•OBTAINED BY FIELD WORK**
- **•SAMPLED IN THE PREVIOSUS IDENTIFIED AREAS**

2-IDENTIFICATION AND SELECTION OF A SET OF INDICATORS

ARCHIPIELAGO DE CABRERA PARQUE NACIONAL


INDICATOR LIST CLASS I:

- GEOMORPHOLOGY
- ALREADY EXISTING LAND AND/OR COASTAL WATER PLANNING
- SPILLS
- -HIDRODINAMYCS (DEGREE)
- -DEPTH GRADIENTS
- -PRESENCE OF COLONIES OF SEABIRDS
- -MARINE HABITAT HETEROGENEITY
- -QUESTIONARIES
- -PRESENCE OF BD HOT SPOTS (CAVES, REEFS,..)
- -LEGAL ADMINISTRATION, PROTECTION DEGREE

INDICATOR LIST CLASS II (2 SPATIAL SCALES):

-MESOESCALE INDICATORS:
HABITAT STRUCTURE

-MICROESCALE INDICATORS

POSIDONIA MEADOWS

HABITAT STRUCTURE

INVASIVE ALGAE

INDICATOR SPECIES

DEMOGRAPHIC BALANCE

ROCKY AREAS INDICATORS

HABITAT STRUCTURE

LANDSCAPE COMPLEXITY/RICHNESS

INVASIVE ALGAE

SEA URCHIN GRAZING AREAS

RICHNESS SPECIES INDICATORS

3- STUY CASE AREA

SELECTION CRITERIA:

-DIVERSITY OF MARINE

- -HABITATS
- -ACCESIBILITY
- -ALREADY EVALUATED AREA

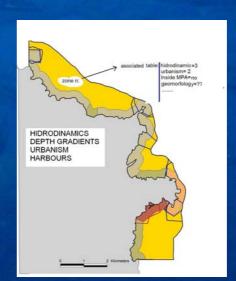
URBAN AREAS

CLIFFS

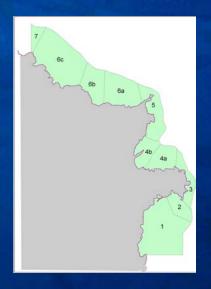
4-DATA ANALYSIS

The analysis method must:

- •Be easily reproducible
- •Be based on low cost tools
- •Be adaptable to the managers economical resources



PROCESSING OF INDICATORS CLASS I:

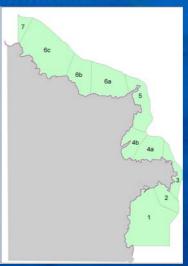


Each indicator generate a map

All maps overlap

The area is evaluated for initial zone classification and design of sampling for indicators class II

4-DATA ANALYSIS


PROCESSING OF INDICATORS CLASS II:

Mesoscale: space stratified sampling

Microscale:

LOCATION OF PROPER HABITATS IN EACH ZONE IN SITU SAMPLING
DATABASE DEVELOMENT

SITE	Bo des Matzoc	Faralló d'Albarca	s'Albarda	Cap des Freu	Sa Mula
ZONE	6c	7	6a	5	4b
HABITAT_DIVERSITY	2	3	3	4	3
ROUGHNEES	2,5	2	2,5	3	2
LANDSCAPE	2	3	1,5	3	3
INVAASIVE_ALGA	0	0	0	0	0
CONECTIVITY	3	3	1	1,5	2,5
URCHINS	NO DATA	presencia	NO DATA	NO DATA	NO DATA
RICHNESS	2	2	2	2	2
BIOMASS	2	2	2	4	3
SUM	13,5	15	12	17,5	15,5



NEXT:

TEST OF DIFFERENT METHODS FOR NUMERICAL INTEGRATION OF ALL INDICATORS

5- END PRODUCTS:

"HOW TO" DOCUMENTS.....

Zone identification protocols

Sampling protocols

GIS & data analysis protocols

Final results interpretation document

GRACIAS, شکرا, MERCI, THANKS

THE CREW

JOSE AMENGUAL RAMIS: COORDINATOR MPA MANAGER

NURIA MARBAMARINE PHANEROGAMS

JUAN MORENO
GIS PROCESSING

OLGA REÑONES & PEP COLL
FISH BIOMASS (UNDERWATER VISUAL CENSUS)

DIEGO ALVAREZ BERASTEGUIFISHERIES & GEOINFORMATICS

OTHER COLABORATORS:

-ENRIC BALLESTEROS: ENVIRONMENTAL QUALITY INDEXES BASED ON COASTAL ALGAE

COMUNITIES

-ALFONSO RAMOS: GENERAL ADVICE