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Although much evidence exists showing organismal consequences from
artificial light at night (ALAN), large knowledge gaps remain regarding
ALAN affecting species interactions. Species interactions occur via shared
spatio-temporal niches among species, which may be determined by natural
light levels. We review how ALAN is altering these spatio-temporal niches
through expanding twilight or full Moon conditions and constricting noctur-
nal conditions as well as creating patches of bright and dark. We review
literature from a database to determine if ALAN is affecting species inter-
actions via spatio-temporal dynamics. The literature indicates a growing
interest in ALAN and species interactions: 58% of the studies we analysed
have been published since 2020. Seventy-five of 79 studies found ALAN
altered species interactions. Enhancements and reductions of species inter-
actions were equally documented. Many studies revealed ALAN affecting
species interactions spatially, but few revealed temporal alterations. There
are biases regarding species interactions and ALAN—most studies investi-
gated predator–prey interactions with vertebrates as predators and
invertebrates as prey. Following this literature review, we suggest avenues,
such as remote sensing and animal tracking, that can guide future research
on the consequences of ALAN on species interactions across spatial and
temporal axes.

This article is part of the theme issue ‘Light pollution in complex
ecological systems’.
1. Introduction
Natural light cycles cue daily, monthly and annual activity patterns of species
and have been a selecting force for adaptive visual, physiological, morphologi-
cal and behavioural traits [1,2]. As many species are active for a limited portion
of the 24 h cycle, they have specific traits that optimize fitness during their
temporal niche [2,3]. An individual’s temporal niche is defined by their predict-
able 24 h activity bout such as diurnality, crepuscularity and nocturnality.
Species that occupy the same temporal niche are much more likely to interact
in antagonistic (e.g. predator–prey) or mutualistic (e.g. plant–pollinator) inter-
actions, but also amensalistic and commensalistic interactions. For instance,
many prey species have evolved their activity patterns to reduce predation
risk [4]. Although the theoretical construct of temporal niches dictating species
interactions is in its infancy [2], the evidence is overwhelming that temporal
partitioning facilitates coexistence between competitors, mutualists, and
predators and their prey [3–5].

Unfortunately, the temporal niches that have dictated species activity patterns,
their interactions and the associated traits involved in species interactions (e.g.
vision, coloration), are being altered and destroyed by artificial light at night
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Figure 1. The absolute intensity of light in millilux resulting from solar and
lunar elevation under natural conditions. When the Sun is less than 18°
below the horizon, the altitude and phase of the Moon is the most important
factor determining night-time light levels in natural settings. The dashed ver-
tical line represents the horizon. Sun, cloud and lunar icons indicate each
light condition. Yellow lines represent the solar altitude and grey lines rep-
resent lunar altitude. The pink bar represents the range of light at starlight
conditions when both the Moon and Sun are under the horizon by at least
18°. Modified from Johnsen [21] and Jones et al. [22].

royalsocietypublishing.org/journal/rstb
Phil.Trans.R.Soc.B

378:20220356

2

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

30
 O

ct
ob

er
 2

02
3 
(ALAN) [6]. This disruption of temporal niches globally is
affecting species interactions in two ways. First, a change to
the balance of naturally occurring species interactions due
to shared temporal niches is occurring, where one species
may have an adaptive advantage over the other, such as bats
having increased foraging efficacy on flying insects under
light-polluted skies [7]. Second, novel species interactions are
occurring during altered temporal niches as certain species
are having their temporal niche expanded (e.g. for crepuscular
species under ALAN such as insectivorous birds in urban
environments [8]), whereas other species are experiencing a
contracted temporal niche, such as nocturnal rodents that are
only active under very dim conditions [9]. In both scenarios,
the evolved traits that are adaptive under one temporal niche
may now become maladaptive and result in a shift in the
coevolutionary relationship between two species [10].

ALAN is increasing both spatially and in intensity, with
projections of 50% of global terrestrial area having ALAN
exposure by 2052 [11–13]. With half of terrestrial ecosystems
experiencing altered temporal niches fromALAN, it is impera-
tive that we understand the ecological consequences of altered
species interactions from ALAN [14]. Thus, our goals in this
paper are to: (i) underscore that natural light cycles have
shaped species interactions, as well as traits; (ii) review the
alteration and destruction of natural light cycles relative to
temporal niches and associated traits (e.g. vision, thermoregu-
lation and coloration); (iii) provide a conceptual framework for
the effects of ALAN on species interactions by exploring
enhancements and reductions of species interactions due to
the expansion and contraction of spatio-temporal niches;
(iv) conduct a brief literature review from a literature database
to highlight studies that show species interaction effects from
ALAN; and (v) introduce techniques and methods to test
hypotheses surrounding the consequences of ALAN on the
spatio-temporal dynamics of species interactions.
2. Natural light entrains activity patterns and
selects for specific traits

For thousands of years, humans have recognized that organ-
isms exhibit predictable periodic behaviours corresponding
to the timing of day and night, lunar phases and seasons [4].
Although time has only recently been a focus of niche
partitioning [3,4], evidence is demonstrating that time is
indeed an ecological niche variable that results in temporal
niches [5,15]. The temporal niche can be defined as the time
of day at which individuals display locomotor activity [2],
such as diurnality (day-active), nocturnality (night-active), cre-
puscular (twilight-active) and cathemeral (predictably active
and inactive during both day and night) [3]. However, it
is crucial to understand that an individual’s temporal niche is
dependent upon specific behaviours and seasonality, for
example, many migratory birds are mostly diurnal except
during the annual migration, which is mostly a night-time be-
haviour [16]. Organisms have evolved daily activity patterns in
response to predictable environmental variables (e.g. lighting,
temperature and biotic community) via circadian rhythms that
are entrained by light and temperature [2,3]. Thus, temporal
niches such as day, twilight and night all have key biotic com-
munities that interact with each other, and theoretically, each
individual has adaptations for increasing fitness within their
respective temporal niche [2,17,18].
Temporal niches can range from a few minutes, such as
twilight in the tropics, to hours, such as day and night or
full Moon and new Moon. These temporal niches are all
defined by the presence/absence/duration of natural light
and, hereafter, we will focus on light as the driving factor
of temporal niches, with the caveat that other crucial environ-
mental factors correlate across these temporal niches, such as
temperature [19]. Also, we focus on temporal niches that
occur within the 24 h cycle of Earth and do not include sea-
sonal changes in photoperiod. Photoperiod is an important
factor affecting species distributions and biotic interactions
and is greatly altered by ALAN, but is beyond the aims of
our manuscript [20].

Irradiance is the amount of ambient lighting in an environ-
ment, and during a solar day it varies over nine orders of
magnitude (0.0006–100 000 lx), changing with solar altitude,
cloud cover and lunar illumination (figure 1) [23]. There are
three broad timescapes during a solar day: daylight, twilight
and nightlight, defined mostly by the amount of light
(figure 1). However, owing to the physical nature of the atmos-
phere, the spectral composition of light varies across the solar
day–night cycle, with daylight being mostly broadband (i.e.
‘white’ light), twilight comprising short and long wavelengths
(i.e. purple) and nightlight consisting mostly of longer wave-
lengths (i.e. amber under moonlight and red under starlight).
The significance of these timescapes for organismal behaviours
and interactions cannot be understated [2,24,25]. For example,
many flowers control scent emission and nectar production to
attract pollinating day-active bees by light intensity [15,26].
Furthermore, the distance of diel vertical migration by zoo-
plankton is directly controlled by light intensity, with some
zooplankton not reaching the surface of the water column
under light intensities brighter than starlight [27,28]. There
are numerous cases of organisms cueing specific behaviours
to changes in light levels across the solar day (see [12] for a
full review).
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The lunar cycle drastically alters nocturnal illumination
owing to the moon reflecting approximately 0.0002% of solar
radiation, resulting in night light intensities that range from
0.0006 lx (new Moon) to 0.2 lx (full Moon), depending
on lunar phase and lunar altitude (figure 1) [12,21,29].
Although lunar illumination only contributes substantially to
environmental lighting at night, many organisms cue their
behaviours to night light levels dependent upon lunar illumina-
tion (see [12] for details). The impacts of lunar illumination on
species and their interactions are complex and nuanced, but, at
least in mammals, visually guided carnivores tend to minimize
foraging outside of new Moon conditions, whereas visually
guided prey tend to increase activity under moonlight [30].
Prey that relies upon non-visual sensory modalities for preda-
tor detection tend to be lunar phobic—i.e. inactive under
moonlight [30]. Thus, moonlight is a key driver of animal
behaviour and species interactions at night.

Countless adaptations have arisen from solar day and
lunar light cycles, and here we briefly highlight visual,
morphological and temporal adaptations that are likely to
be affected by ALAN and result in altered species inter-
actions. Visual adaptations have mostly been selected to
optimize acquiring environmental information across the
immense range of light intensities across the solar day. As
many species are more active during one temporal niche
than another, visual adaptations usually are the result of a
trade-off between acuity (spatially, temporally and spectrally)
and overall sensitivity—the ability to collect a requisite
amount of photons to enable vision [31]. Visual systems
across the animal kingdom are myriad and diverse [32], but
some general patterns are evident. Nocturnal species usually
have large tubular-shaped eyes, which have highly curved
corneas, thicker lenses, larger photoreceptors and fewer
types of photoreceptors (i.e. colour-blindness [33], but see
[34–36]). In addition, many nocturnal taxa possess a tapetum
lucidum, which is a reflective membrane behind the retina
that increases photon capture, as well as neural and temporal
summation across photoreceptors, which combine to increase
the chances of a visual signal in dim conditions [1,32]. The
eyes of diurnal species are usually characterized by smaller
photoreceptors, more types of photoreceptors (resulting in
better colour vision), more ganglion cells innervating photo-
receptor cells, thinner lenses, a fovea resulting in high
acuity, and—in vertebrates—fewer rods [1,32,37]. Thus, gen-
erally speaking, under bright daylight conditions the vision
of animals evolved for nocturnal activity will be colour-
blind, blurry, coarse and overstimulated, perhaps resulting
in momentary blindness. In contrast, vision evolved for
diurnal activity will be blind under dim starlight conditions.

As visual abilities are highly correlated with temporal
niches due to light intensity, it is not surprising that visually
linked traits such as coloration are also highly correlated with
a temporal niche [38–40]. Animal coloration is important for
deterring predators (e.g. crypsis and aposematism), foraging
(e.g. crypsis and aggressive mimicry) and communication
(i.e. mate choice and kin recognition) and, as such, nocturnal
species have evolved coloration to increase contrast and
are usually black and white, as in owls and non-butterfly
moths, whereas diurnal species are generally more colourful,
as in songbirds and butterflies [38,41]. Furthermore, it has
recently been shown that temporal niches likely were involved
in the evolution of sexual signals and warning signals,
with ancestral diurnal clades evolving sexual signals and
ancestral nocturnal clades evolving warning signals [42].
Finally, daily changes in temperature are highly correlated
with timescapes, resulting in numerous thermal adaptations
enabling organisms to cope with hotter temperatures during
the day and cooler temperatures at night [2]. Consequently,
the role of light cycles cannot be underplayed when evaluating
the mechanisms underlying species interactions and the
consequences of ALAN.
3. ALAN alters and destroys natural light cycles
responsible for temporal niches and nocturnal
spatial niches

The night sky has become brighter owing to artificial light
sources by approximately 10% every year for the last 10 years
[13]. With brighter skies comes brighter nocturnal environ-
ments and the erasure of natural night lighting [12,43,44]. As
reviewed above, natural night conditions range four orders
of magnitude from starlight/new Moon of approximately
0.0006 lx to the full Moon directly overhead at approximately
0.2 lx [21]. Starlight conditions, due to the new Moon phase
or theMoon being below the horizon, comprise approximately
50% of night-time hours, and thus, represent themost common
night-time light condition [45]. Seymoure et al. [12] transla-
ted the 2016 New world atlas of artificial night sky brightness
[43] to illuminance experienced on the Earth’s surface due to
light pollution and found that approximately 23% of terrestrial
habitats never experience new Moon lighting conditions and
approximately 5% are ten times brighter and experience perpe-
tual crescent Moon illumination. It is important to note that,
in both the New world atlas of artificial night sky brightness [43]
and the Seymoure et al. translation, direct sources of light
were not included; thus nocturnal light conditions were under-
estimated, resulting in many areas likely never experiencing
quarter Moon conditions (0.01 lx, 100 times brighter than
natural [11,13]).

The increase in nocturnal light conditions is concerning
not only owing to the loss and degradation of the lunar
light cycle [46], but also owing to the destruction of celestial
cues that many species use for navigation and orientation,
and owing to the addition of unnatural wavelengths (i.e.
short wavelengths) of light [47–50]. Furthermore, ALAN
not only affects the light cycles of the solar day and lunar
month but also affects the Earth year light cycle by artificially
increasing the photoperiod [51,52]. Consequently, many
organisms exposed to artificial lighting exhibit phenological
mismatch—the altered timing of regularly repeated phases
in their life cycles—such as advanced migration of birds
[53] and earlier budding in plants [54]. If humans continue
to increase the extent and intensity of ALAN, especially
with shorter wavelengths of light, the Earth will experience
perpetual twilight. Perpetual twilight will match both the
intensity and spectrum of natural twilight, likely masking
all light-related nocturnal cues that numerous organisms
rely upon for timing their activity to optimize evolved adap-
tations for a nocturnal lifestyle [55].

Not only does ALAN destroy natural photoperiods by
extending perceived twilight owing to increased light
levels, but also it drastically alters the spatial arrangement
of light owing to direct light sources illuminating specific
areas and casting shadows on other areas [56,57]. This is
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Figure 2. Potential altered species interactions due to ALAN. (a) Dusk: crepuscular species such as bees may shift their activity and pollinate flowers later at night
and/or earlier in the morning. (b) Early night: many nocturnal species, such as bats and rodents, may remain inactive at night under the presence of ALAN [9,66].
(c) Night: nocturnal species may aggregate around artificial light sources at night owing to non-homogeneous lighting, such as bats and moths aggregating around
artificial light [67,68]. (d ) Dawn: diurnal predators may extend their foraging to earlier in the morning owing to the presence of ALAN and thus increase predation
on insects as a result of an extended temporal niche [69–71]. Illustration created by A. Portz. (Online version in colour.)
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another avenue in which ALAN can disrupt species inter-
actions—as certain species may be attracted to bright areas
and lights [58–60], whereas other species may avoid artifi-
cially lit areas [61]. Furthermore, not only will ALAN be
unequally distributed across a landscape both spatially and
temporally, but different spectra of light will be cast upon
the landscape owing to the myriad sources of artificial light
(e.g. high-pressure sodium lamps, mercury vapour, metal
halides and light-emitting diodes with numerous different
colour temperatures) [62,63]. Thus, evolved species inter-
actions may be altered owing to artificial lightscapes within
a habitat resulting in one focal species occupying an artifi-
cially bright microhabitat and another species occupying a
more natural, dark microhabitat.
4. Framework for ALAN effects on species
interactions spatio-temporally

Most interactions between species occur when two species’
temporal and spatial niches overlap, regardless of the type
of interaction. Here we focus on direct antagonistic inter-
specific interactions, including predator–prey, herbivory,
parasitism, parasitoids and mutualisms such as pollination
and seed dispersal. In most cases of species interactions, the
specific interaction occurs during a specific timescape that
could be altered by ALAN. For example, Lasioglossum
texanum sweat bees emerge from nests during dusk in
search of evening-primrose flowers (Oenothera spp.) to pro-
vision their nests with pollen, and on moonless nights will
return to their nest before the end of nautical twilight
owing to visual constraints [64]. Oenothera flowers open
after sunset and remain open through the night, a behaviour
dependent upon circadian rhythms entrained by light levels
[65]. This specialized pollinator–plant interaction evolved
under the natural darkness of the Chihuahuan Desert, result-
ing in visual adaptations and circadian behaviours. Perpetual
twilight from ALAN could disrupt the circadian clocks and
affect associated traits, resulting in a phenological mismatch
between the co-dependent pollinator and flower; however,
this temporal mismatch within a species interaction has not
been tested. It is imperative to investigate not only how
ALAN is structuring biotic communities but also how
ALAN is disrupting evolved species interactions that rely
upon numerous adaptations for specific temporal niches.
With this in mind, we propose a framework for understand-
ing disrupted, as well as novel, species interactions due to
ALAN and spatio-temporal niches.

ALAN can affect species interactions in two main ways:
(i) it can affect the species that interact during a temporal
niche or (ii) it can alter the activity pattern/circadian rhythm
of species, resulting in species occupying a novel temporal
niche (figure 2). Additionally, ALAN is extending both day
and twilight timescapes while reducing the night timescape
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[72]. Crepuscular species, which occupy the twilight temporal
niche, initially had a short bi-modal period of activity, dawn
and dusk, whereas now these species experience much
longer twilight periods and could be active longer, resulting
in more interactions with other species. In addition, obligate
nocturnal species that timed their activity during new Moon
conditions may no longer experience their advantageous tem-
poral niche or will have it drastically shortened in duration
(figure 2). This is likely disadvantageous for prey species and
mutualistic interactions that require the refugia of new Moon
darkness; however, it is likely advantageous for predators, her-
bivores and parasites that depend on brighter conditions for
their respective behaviours [19].

For those individuals that occupy the same temporal
niche, regardless of whether it is a result of a naturally occur-
ring shared temporal niche or of artificial light altering an
individual’s temporal niche, interactions with other species
can be increased or decreased owing to the spatial compo-
sition of ALAN. Under patchy, non-homogeneous artificial
light in the environment, photophobic species will have
their nocturnal niche spatially constricted, as has been docu-
mented in rodents [9,73], bats [74] and insects [75,76],
whereas photophilic species will be attracted by light sources
in the landscape, such as bats [67], birds [77], spiders [78] and
insects [59,79].

Following supposed temporal and/or spatial niche
alterations due to ALAN, we propose a framework for
approaching how ALAN affects species interactions. The
framework consists of identifying the two main taxa (i.e. con-
sumer and resource), the interaction type (e.g. herbivory,
predation and pollination), whether the strength of the inter-
action (sensu [80]) is enhanced or reduced (i.e. under the
impact of ALAN individuals of a given species pair would
interact more often or more strongly, or less often or
more weakly), and whether a temporal and/or spatial mis-
match is occurring under ALAN. This is a simplified
approach and fully understanding species interactions
under ALAN will consist of knowing the effects on more
than just two main taxa. However, owing to the paucity of
studies directly testing the effects of ALAN on species inter-
actions, this framework will enable future research to be
comparable across studies, enabling comprehensive meta-
analyses resulting in a much larger understanding of species
interactions in the Anthropocene.

We applied this framework to a database on the effects of
ALAN and movement, including search terms like foraging,
flight or refuge as one part and a group of technical terms
related to artificial lighting as the second part; see electronic
supplementary material for complete search string. Within
this database, we screened for studies that investigated species
interactions explicitly, namely predator–prey, plant–herbivore,
plant–pollinator, parasite/parasitoid–host, and other types
of interactions typically included in investigations of
species interactions and interaction networks [81,82]. Given
that detritus and detritivores form an essential part of
many, if not most food webs [83], and that effects of ALAN
on detritivores have been documented already [84], we also
decided to include these interactions in our analyses, although
they technically do not represent an interaction between
two species. Our screening resulted in 93 studies out of 1252
studies from the original database, retrieved from Web of
Science on 21 December 2022. Subsequently, we applied our
framework to determine the two main taxa, the interaction
type, whether the interaction was enhanced or reduced, and
if temporal and/or spatial mismatch were induced. Through
applying our framework, we further narrowed our subset of
studies to 79, including 81 interactions owing to two studies
investigating two different types of interactions simul-
taneously. Briolat et al. [85] looked at a predator–prey and a
plant–pollinator interaction, whereas Giavi et al. [86] investi-
gated both seed predation by a herbivorous insect and
pollination success.

We want to emphasize that our literature review was not
intended to represent a full systematic analysis. The rapidly
developing literature on ALAN in general and its effects on
species interactions in particular suggests it makes sense to
wait a little more given how fast new studies covering pre-
viously uncovered organism groups are added (see results
below). Furthermore, we are aware that (i) our approach of
relying on a limited list of search terms related to movement
ecology, as well as (ii) our reliance on the core database of
the Web of Science alone, will not prevent the unintended
exclusion of relevant studies. Moreover, our approach is unli-
kely to unravel issues like publication bias [87] or decline
effects [88,89]. Nevertheless, we are confident that drawing
from our movement ecology database provides a good
overview of the field, particularly which species groups are
best covered, and highlights the dynamics of this rapidly
developing field.
5. Literature review of expansion and contraction
of spatio-temporal niches involved in species
interactions by ALAN

The effects of ALAN on species interactions are only begin-
ning to be quantified and understood, as our review
revealed that 94% (75 out of 79) of studies researching species
interactions were published since 2014 and over 58% (46 out
of 79) of studies were published in the last 3 years (figure 3a;
electronic supplementary material, data). Thus, it is likely
that our knowledge of the consequences of ALAN on species
interactions will greatly increase within the next decade.

Of the 79 articles in the movement and ALAN database
that studied species interacting, 56 were focused on preda-
tor–prey interactions, 11 on herbivory, six on pollination,
five on detritivory and then only one article each for
frugivory/seed dispersal, parasite–host and parasitoid–host
interactions (figure 3b; electronic supplementary material,
data). The species studied were diverse, albeit biased with
respect to bats and insects, also including crustaceans, ara-
chnids, molluscs, angiosperms, protists and all major
classes of vertebrates (figure 3c,d; electronic supplemen-
tary material, data). Not all of the 79 studies showed a
change in species interactions; only 54 showed that inter-
action strength was affected by ALAN. There were an
almost equal number of studies showing reductions and
enhancements of interactions, with 29 and 28 studies for
enhancement and reduction, respectively. Two studies
found that enhancement and reduction of species interactions
were dependent upon species, even within the same taxon:
bats [90,91].

Reductions in species interactions occurred across inter-
action types including predator–prey (12), herbivory (6),
detritivory (4), pollination (3) and frugivory (1). The taxa
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Figure 3. Findings from the literature review on species interactions and ALAN. (a) The number of publications on species interactions and ALAN by year. (b) The
number of interactions by interaction type. (c) The number of interactions by taxa for consumer species. (d ) The number of interactions by taxa for resource species.
Note: (a) is based on 79 publications as Giavi et al. [86] and Briolat et al. [85] both included two separate interaction investigations, and (b–d) are based on 81
separate investigations.
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involved in these reduced interactions were diverse, although
dependent upon interaction type. Consistent with the overall
findings of detritivory, only amphipods were shown to have
reduced foraging/shredding on detritus. Not surprisingly,
pollination was only shown to be reduced in insects, specifi-
cally moths and their respective pollen sources. Alterations to
herbivory occurred with insects, molluscs and mammals. Of
the predator–prey interactions, both predators and prey were
very diverse in representation, ranging across chiropterans,
molluscs, crustaceans, asteroids, fish, arachnids, rodents and
birds as predators. The prey consisted of insects, crustaceans,
molluscs and sea turtle hatchlings.

Reductions resulted mostly from at least one, if not both, of
the species exhibiting photophobic behaviour and avoiding
ALAN. For example, Macgregor et al. [92] found that
moth abundance was halved at lit sites and more concerningly
that moths travelling through lit areas had significantly smaller
pollen loads.All reductions in detritivorywere a result of amphi-
pod photophobic behaviours—amphipods exposed to ALAN
remained within their shelters and did not shred detritus at
night [84]. Frugivory on pepper plants decreased under
ALAN, even within dimly illuminated areas, in Sowell’s short-
tailed bat (Carollia sowelli) owing to a reduction in foraging by
the bats [93]. Eckhartt & Ruxton [94] found that insects, albeit
dead insects within bird feed, had higher nocturnal predation
rates away from direct light sources, and they suggest that this
is due to nocturnal insectivores avoiding lit areas. One exception
tophotophobic behavioursdriving the reduction in species inter-
actions was found in herbivory on the greater bird’s-foot-trefoil
(Lotus pedunculatus) by pea aphids (Acyrthosiphon pisum),
which was not due to photophobia by aphids, but instead due
to decreased flowering density of plants under ALAN [95].
Just as reductions resulted mostly from photophobic
species, enhancement was due to photophilic species.
Enhancements were demonstrated for herbivory (2 studies),
and for parasite–host (1 study), parasitoid–host (2 studies), pol-
lination (2 studies) and predator–prey (22 studies) interactions.
Interestingly, many taxonomic groups showed both reduced
and enhanced species interactions, indicating that the effects
of ALAN on species interactions are very species- and con-
text-specific. For example, Cravens et al. [91] found that many
bat species increased foraging behaviour under ALAN
whereas other bat species decreased foraging. The majority of
species interactions that were enhanced were due to preda-
tor–prey interactions between birds and bats as predators
and insect prey (figure 3). Although studies varied across
methods and species, the overall trend was similar: many
bats increased foraging activity under ALAN and had greater
consumption of their insect prey, likely owing to increases in
prey abundance [91,96]. It appears that ALANmay be tipping
the balance of the evolutionary arms race between bats and
moths. Bailey et al. [97] found that eared moths, which detect
bat echolocation under natural conditions but not artificially
lit conditions, had greater predation rates by bats under
ALAN. Further enhancements included Australian garden
orb-web spiders (Hortophora biapicata) selecting web foraging
sites in ALAN-rich areas, resulting in higher prey capture
rates [78]. Tetragnathid spiders were also positively affected
by ALAN [98,99]. ALAN sites had 51% more tetragnathid spi-
ders than dark controls, and prey capture rates were 139%
greater in ALAN mesocosms, owing to an 818% increase in
the abundance of emergent aquatic insects under ALAN [98].
Avian predation on insects was enhanced by ALAN as owls
sought out lit areas and changed their diets to be more
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invertebrate-rich, specificallywith insects that were attracted to
lights [100]. Increases in predator–prey interactions were not
limited to terrestrial habitats; predation on aquatic crabs and
aquatic invertebrates by vertebrate predators was greatly
increased by ALAN [84,101,102].

Although predator–prey interactions were a main focus of
enhanced species interactions due to ALAN, several studies
found increases in herbivory, parasitism and pollination.
The great pond snail, Lymnaea stagnalis, had numerous effects
from ALAN exposure, including delayed reproductive devel-
opment and behaviours. ALAN also increased foraging
rates at night on lettuce while reducing movement compared
with controls [103]. Giavi et al. [86] found seed-predacious
moths (Hadena sp., Noctuidae) selected plants that were
adjacent to light sources and thus these plants had the
highest seed predation compared with direct light sources
or controls. ALAN also increased haemosporidian parasites
in dark-eyed juncos, Junco hyemalis, [104] as well as increased
foraging for pyralid moth hosts by diurnal parasitoid wasps,
Venturia canescens, during the night [105]. Macgregor et al.
revealed that plants had higher pollination rates under con-
stant night-time lighting compared with dark controls and
partial-night-time lighting, likely due to higher pollinator
attraction [106,107].
(a) Temporal mismatches
There were seven cases of temporal mismatch, which is not
surprising as most studies focused on species that occupied
the same temporal niche. Furthermore, it is possible that
several studies may have missed shifts in temporal niches
owing to studying non-specific taxa and thus not identifying
the normal chronobiology of the resource taxa, for example,
insects and zooplankton. Most studies involved predator–
prey interactions; however, one investigated the effects
of ALAN on a diurnal pollinator, a species of yucca moth
(Tegeticula maculata) and its host plant, the chaparral yucca
(Hesperoyucca whipplei) [107]. This study found that although
T. maculata was diurnal in control plots, yucca in areas with
high levels of skyglow had greater rates of pollination and
fruit set [107]. Another study documented changes in fora-
ging timing in a diurnal parasitoid wasp (V. canescens),
which under the influence of ALAN searched for its pyralid
moth host (Ephestia kuehniella) at night [72]. ALAN has also
disrupted temporal niches and associated species interactions
in predator–prey contexts. In all five studies documenting a
shift in temporal niches involved in predator–prey inter-
actions, vertebrates were the predators. Several species of
diurnal birds, including northern mockingbirds (Mimus poly-
glottos), blue tits (Cyanistes caeruleus) and great tits (Parus
major), expand their foraging bouts on insects into the night
or begin before twilight when exposed to ALAN [108–110].
Another case of temporal niche expansion was found in the
common wall gecko (Tarentola mauritanica), which interest-
ingly was dependent upon lunar illumination. Geckos
increased foraging under both moonlight and ALAN and
relied on ALAN to increase foraging activity during new
Moon conditions [69]. Diurnal jumping spiders, Platycryptus
undatus, also have been shown to extend foraging on insect
prey into the night under ALAN [70]. Finally, only one case
of temporal niche contraction was reported within the litera-
ture. The least horseshoe bats (Rhinolophus pusillus) emerged
14 min later under lit conditions compared with dark control
conditions, and even more concerning is that only 10% of bats
emerged under light exposure [66].

(b) Spatial mismatches
There were almost four times (27) as many studies finding
spatial mismatches between species due to ALAN as the
seven studies finding temporal mismatches. The lack of tem-
poral mismatch studies is likely an artefact of study designs
for investigating ALAN on species interactions as many
studies investigated the presence or absence of consumers
and resources under ALAN. However, the lack of temporal
mismatch evidence could be indicative of spatial mismatch
occurring more often; more research is needed. Most cases
of spatial mismatch were due to photophobia or photophilia
in one of the species but not both. For example, the nocturnal
and endangered rodent, Stephen’s kangaroo rat (Dipodomys
stephensi), exhibited photophobia, was less likely to forage
in lit patches and would only fully deplete resource patches
under dark conditions [9]. Also, the burrowing owl (Athene
cunicularia) altered spatial use across the landscape depend-
ing upon light sources, with owls preferring lit sites,
resulting in the consumption of different prey from owls in
dark control sites [100].

As with the other species interaction effects, most cases of
spatial mismatch were found in predator–prey interactions,
(15/27) and then herbivory (7/27), detritivory (4/27) and
finally pollination (2/27). However, as there were 56 studies
investigating predator–prey interactions, only 26% of preda-
tor–prey interactions demonstrated a spatial mismatch,
whereas 63% of herbivory (7/11), 33% of pollination (2/6)
and 80% of detritivory (4/5) demonstrated cases of spatial mis-
match. Nineteen of the 27 cases of spatial mismatch had the
interaction strength reduced, whereas six cases demonstrated
enhanced species interactions due to spatial mismatch and
two cases showed that the species altered their spatial distri-
bution, but were not able to determine if the interaction was
strengthened or reduced. Finally, there were only three studies
that showed both temporal and spatial mismatch, all of which
were predator–prey interactions that involved vertebrates as
the predators. Eleonora’s falcons (Falco eleonorae [110]) and
wall geckos (T.mauritanica [69]) extended foraging into the noc-
turnal niche on migratory birds and insects, respectively, near
artificial light sources, thus enhancing the predator–prey inter-
action both temporally and spatially. Luo et al. [66] is the one
study that found predator–prey interactions between bats
and insects were reduced both spatially and temporally
under artificial light owing to bats avoiding both spaces and
times with light pollution. We do not believe that these three
studies demonstrate that spatial and temporal mismatches
between species due to ALAN are rare, but instead, demon-
strate that few studies have investigated temporal and spatial
mismatch of species interactions under ALAN owing to
research biases and the lack ofmethods and equipment to accu-
rately and effectively quantify species interactions in the
presence of ALAN.
6. Next steps, tools, techniques and future
directions

Overall, the evidence is clear that ALAN is affecting species
interactions in myriad ways; however, the literature is too
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sparse currently to make broad conclusions about the
impacts of ALAN on species and their interactions within
biotic communities. However, there are a few generalizations
that can be made from past research. Previous literature is
biased towards terrestrial predator–prey interactions focused
on predacious bats and birds and is lacking investigations on
seed dispersal, parasitism and parasitoids. It also appears
that ALAN leads to enhanced species interactions just as
often as it reduces species interactions, with closely related
species showing different effects [91]. Additionally, species
interaction research is lacking depth and breadth regarding
direct effects of ALAN on species interactions across time
and space, as many studies reviewed did not assess direct
effects between species, nor did the studies quantify temporal
and spatial alterations of species behaviours. Finally, very few
studies connected traits and species’ natural histories to the
effects of ALAN on interactions, though see [85]. Thus,
the field is ripe with opportunities to further expand our
understanding of the consequences of ALAN on species
interactions across space and time.

Over the last few decades, great strides have been made
across three different and complementary methods that now
enable us to test hypotheses surrounding ALAN and species
interactions: site-based sensors [111,112], individual-based sen-
sors [52] and remote sensing of light at night [24]. As we are
advocating for researchers to contain hypotheses surrounding
temporal and spatial mismatches in their studies, two factors
must be included: time and space. Fortunately, site-based sen-
sors and individual-based sensors include spatio-temporal
information. Site-based sensors such as camera traps, passive
acoustic monitoring, lidar and radar are powerful and robust
tools to quantify the time (in seconds) and space of organisms
(in centimetres or metres depending upon the method) in the
field [113].However, inmost cases, site-basedsensors are limited
in their ability to capture species interactions, but instead only
enable testing for spatial and temporal overlap in occupancy
between two species [114], whereas individual-based sensors
such as data loggers and accelerometers allow direct measure-
ments of species interactions. By coupling these site-based
sensors and/or individual-based sensors with light loggers or
remote sensing of ALAN, researchers can directly quantify
how ALAN is disrupting the natural movement and utilization
ofboth spaceand timeacrossnumerous individuals andspecies.

A few other site-based approaches have developed immen-
sely over the last decade and provide numerous applications to
quantifying spatio-temporal distributions of animals under
ALAN. Weather surveillance radar will mostly be informative
at the landscape scale [115], whereas techniques with lidar are
now enabling researchers to quantify and track individuals at
the submetre scale. Insects can be identified down to species,
sex and life stage in certain contexts across a few-kilometre
range [116,117]. As lidar techniques develop, fluorescently
labelled insects will be able to be tracked across ALAN
sites, resulting in endless applications of real-time quantifi-
cation of direct species interactions [113,118]. Finally, even
traditional techniques for documenting species diversity,
such as pitfall traps, have greatly improved enabling research-
ers to passively quantify communities over temporal scales
and now include better spatio-temporal resolution [119].
Time-sorted pitfall traps now enable researchers to quantify
predator–prey and pollinator–plant interactions through
molecular identification of gut contents and pollen load
quantification, respectively [113,119].
A golden age of animal tracking is upon us owing to
advancements in animal biotelemetry devices, such as GPS
tags, enabling collection of accurate and precise data on indi-
vidual-based movement at high frequencies and over long
periods of time [120–122]. Biotelemetry devices and light
loggers continue to decline in size, weight and cost, and
increase in accuracy, precision and longevity, enabling many
species to be tracked relative to light levels using passive and
active telemetry [52,123,124]. Increases in remote data transfer
are further enabling higher frequency and accuracy in the
monitoring of animal movements spatio-temporally [122].
New generations of tracking devices even allow communi-
cation between instruments on different individuals, enabling
novel insights into species interactions such as predator–prey
[125] or commensalisms. Ideally, studies should combine
GPS tags, light loggers and accelerometers to gain full insight
into the specific location, light level and specific behaviours
of individuals interacting with heterospecifics. Accelerometers
have also greatly improved, resulting in understanding specific
predator behaviour such as prey strikes in snakes [126] and
swallowing of prey in fish [127], as well as activity patterns
and antipredator behaviours in prey species [128–130]. Thus,
the techniques are available and improving rapidly, which
we hope will facilitate further research into the consequences
of ALAN on numerous species interactions.

Methods, techniques and equipment for ecologically rel-
evant measurements of light at night continue to improve.
There have been several reviews and methods papers high-
lighting best practices for quantifying light at night in
different realms [23,131–134]. Just as with quantifying species
interactions, there are numerous appropriate approaches for
quantifying ALAN with ecologically relevant metrics [132].
A few guidelines and caveats should be followed for future
research on species interactions and light. First, light has sev-
eral properties that likely affect species interactions, including
intensity, spectrum, polarization and flicker. We urge research-
ers to quantify and/or control these properties as much as
possible in their investigations, especially when introducing
experimental light into an environment [132]. Second, as Aul-
sebrook et al. [131] stress, researchersmust know the limitations
of their equipment and methodologies pertaining to light
levels. It is very unlikely that dark conditions have zero pho-
tons, but instead is much more likely that a measurement of
zero reflects the photon detection limit of the equipment [21].
Third, remote sensing via satellite imaging of ALAN is a
powerful tool for understanding light pollution at the land-
scape and continental level [12,43] However, satellite imaging
is not a realistic surrogate for understanding point sources of
light in an organism’s viewshed [132]. We urge researchers
to include both remote sensing techniques (i.e. satellite
measurements) and on-the-ground measurements of ALAN
to fully understand the light environment in which species
are interacting.
7. Conclusion
AsALANcontinues to increase, resulting inbrighter and shorter
nights [11,13], interactions among species are altered, resulting in
cascadingeffects in ecosystemsworldwide [19,60].Our literature
reviewdemonstrates that there is considerable evidence that noc-
turnal illumination affects individuals within their biotic
community. However, the burgeoning literature on ALAN and
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species interactions is scattered and lacks a unifying framework.
We hope that our work here will facilitate productive investi-
gations into the underlying spatio-temporal mechanisms
resulting in altered interactions among species. Many questions
remain, for example are the effects of ALAN consistent across
different species interactions and in which contexts is ALAN
destabilizing trophic systems? As biodiversity, and the ecosys-
tem services supported by it, are directly tied to species
interactions, it is crucial to understand the impacts of ALAN
on the spatio-temporal dynamics of interspecific interactions.
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